
ON SINGULARITIES OF A BOUNDARY OF THE STABILITY
DOMAIN∗

ALEXEI A. MAILYBAEV† AND ALEXANDER P. SEYRANIAN†

SIAM J. MATRIX ANAL. APPL. c© 1999 Society for Industrial and Applied Mathematics
Vol. 21, No. 1, pp. 106–128

This paper is dedicated to V. I. Arnold on the occasion of his 60th birthday.

Abstract. This paper deals with the study of generic singularities of a boundary of the stability
domain in a parameter space for systems governed by autonomous linear differential equations ẏ = Ay
or x(m) + a1x(m−1) + · · · + amx = 0. It is assumed that elements of the matrix A and coefficients
of the differential equation of mth order smoothly depend on one, two, or three real parameters.
A constructive approach allowing the geometry of singularities (orientation in space, magnitudes of
angles, etc.) to be determined with the use of tangent cones to the stability domain is suggested.
The approach allows the geometry of singularities to be described using only first derivatives of the
coefficients ai of the differential equation or first derivatives of the elements of the matrix A with
respect to problem parameters with its eigenvectors and associated vectors calculated at the singular
points of the boundary. Two methods of study of singularities are suggested. It is shown that they
are constructive and can be applied to investigate more complicated singularities for multiparameter
families of matrices or polynomials. Two physical examples are presented and discussed in detail.

Key words. stability boundary, generic singularity, tangent cone, collapse of the Jordan block,
versal deformation

AMS subject classifications. 93D99, 34D20

PII. S0895479897326675

Introduction. We consider a system of autonomous linear differential equations
ẏ = Ay assuming that the real matrix operator A of dimension m × m smoothly
depends on n real parameters. Stability of the trivial solution y ≡ 0 of the system is
considered. It is well known that the trivial solution is asymptotically stable, if all
eigenvalues of A have negative real part, and unstable if at least one of the eigenvalues
of A has positive real part. According to this definition the parameter space Rn is
divided into the stability and instability domains. Boundary between these domains
corresponds to the cases when some of the eigenvalues have zero real part while other
eigenvalues have negative real part.

Arnold [3, 4, 5] listed all the generic singularities arising at the stability boundary
in two- and three-dimensional space of parameters and gave their description up to a
smooth change of problem parameters (diffeomorphism). In this paper we suggest a
constructive approach allowing one to determine the geometry of singularities (orien-
tation in space, magnitudes of angles, etc.) using only first derivatives of the matrix
A with respect to parameters and left and right eigenvectors and associated vectors
of A, corresponding to the Jordan structure of the matrix A at the singular points of
the boundary. Our study is essentially based on the perturbation theory of eigenval-
ues and eigenvectors, developed by Vishik and Lyusternik [16] and Lidskii [11] and
applied by Seyranian [12, 13] to the case of multiple parameters, and the theory of
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normal forms of families of matrices by Arnold [2] and Galin [7]. Investigation of the
boundary of the stability domain is closely related to construction of tangent cones
to the stability domain at the boundary point, introduced by Levantovskii [9], and
the problem of finding stable perturbations of nonsymmetric matrices considered by
Burke and Overton [6].

We investigate generic singularities of a boundary of the stability domain for lin-
ear autonomous differential equation of mth order x(m) + a1x

(m−1) + · · ·+ amx = 0,
assuming that the coefficients ai smoothly depend on one, two, or three real param-
eters. Explicit formulae to describe the geometry of singularities in the parameter
space are derived.

As examples, two physical problems are considered: stability of equilibrium of a
voltaic arc in an electric circuit and stability of Ziegler’s double pendulum with two
different damping parameters. In the first problem at the singular point “double zero”
we find the angle of the corner of the stability boundary and its orientation in parame-
ter plane. In the second problem it is shown that the singularity, arising at the critical
load of the system without damping, represents, according to Arnold’s terminology [3,
4], the “deadlock of an edge.” This leads to the effects of destabilization due to small
damping and absence of a limit of the critical load when damping parameters tend
to zero. Similar effects could be expected for systems with singularities like “break of
an edge.”

The main result of the paper is that the Jordan structure of the matrix A and
its first derivatives with respect to problem parameters at any point of the stability
boundary define a linear approximation of the stability domain in the vicinity of
the considered point. Similar results are valid for stability problems governed by a
linear differential equation of mth order: to determine the geometry of the stability
domain in the vicinity of a singular point of the boundary we need only to know the
multiplicity of the root of the characteristic polynomial and the first derivatives of
the coefficients of the differential equation with respect to problem parameters at this
point.

1. Collapse of Jordan blocks. Let us consider an eigenvalue problem

(1.1) Au = λu.

Here A is a real nonsymmetric square m ×m matrix, the elements of which, aij(p),
i, j = 1, 2, . . . , m, are smooth functions of a real vector of parameters p = (p1, p2,
. . . , pn)T ; λ is an eigenvalue; and u is a corresponding eigenvector of dimension m.

It is assumed that at fixed p = p0, λ0 is an eigenvalue of A(p0), and a change of
the eigenvalue λ0 is sought that depends on a change of the vector of parameters p.
For this purpose let us consider a perturbation of the vector p0 in the form p = p(ε),
p(0) = p0, where ε is a small positive number and p(ε) is a smooth function of ε.
Determine a real vector of direction e = (e1, e2, . . . , en) = dp/dε 6= 0, where the
derivative is calculated at ε = 0. As a result the matrix A takes the increment

(1.2) A(p(ε)) = A0 + εA1 + ε2A2 + · · · ,

where the matrices A0 and A1 are given by the relations

(1.3) A0 = A(p0), A1 =
n∑

s=1

∂A

∂ps
es.

The derivatives in (1.3) are taken at p = p0.
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Due to the perturbation of the vector p0, the eigenvalue λ0 and the eigenvector
u0 take increments. According to the perturbation theory of non-self-adjoint opera-
tors, developed in [16, 11], these increments can be expressed as series in integer or
fractional powers of ε, depending on the Jordan structure corresponding to the eigen-
value λ0. A multiple eigenvalue λ0 generally splits into l simple eigenvalues under
the perturbation of parameters p = p(ε). Expansions for eigenvalues and eigenvectors
contain terms with fractional powers εj/l, j = 0, 1, 2 . . . , where l is the length of the
Jordan chain [16, 11].

1.1. Simple eigenvalue. Assume that λ0 is a simple eigenvalue of the matrix
A0 and u0 is the corresponding eigenvector. In this case expansions of λ and u take
the form [16, 11]

(1.4)
λ = λ0 + ε λ1 + ε2λ2 + · · · ,
u = u0 + εw1 + ε2w2 + · · · .

For the following presentation we also need the left eigenvector v0, corresponding to
λ0,

(1.5) vT0 A0 = λ0 v
T
0 .

The eigenvectors u0 and v0 in the case of simple eigenvalue λ0 are related by the
condition vT0 u0 6= 0. Substituting (1.2), (1.4) into (1.1) and using (1.5) we find [16, 11]

(1.6) λ1 =
vT0 A1u0

vT0 u0
.

This expression with the use of (1.3) can be given in the form

(1.7) λ1 = (r, e) + i (k, e),

where brackets denote the scalar product in Rn, i.e., (a, b) =
∑n

s=1 asbs. Vectors
r = (r1, r2, . . . , rn)T and k = (k1, k2, . . . , kn)T are the gradient vectors of real and
imaginary parts of λ at p = p0, given by

(1.8) rs + i ks =

vT0
∂A

∂ps
u0

vT0 u0
, s = 1, 2, . . . , n.

There are two complex-conjugate quantities λ1, λ1 = (r, e)±i (k, e) corresponding
to a complex-conjugate pair of simple eigenvalues λ0, λ0 = α0± i ω0. The increments
of these eigenvalues are given in the form

(1.9) λ, λ = α0 + (r, e) ε± i [ω0 + (k, e) ε ] + o(ε).

In the case of a real eigenvalue λ0 = α0, the vector k = 0.

1.2. Double eigenvalue. Let us consider the case of a double eigenvalue λ0

with the length of the Jordan chain equal to 2. This means that at p = p0 the
eigenvalue λ0 corresponds to an eigenvector u0 and an associated vector u1 governed
by the equations

(1.10)
A0 u0 = λ0 u0,

A0 u1 = λ0 u1 + u0.
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For a left eigenvector v0 and an associated vector v1 we have

(1.11)
vT0 A0 = λ0 v

T
0 ,

vT1 A0 = λ0 v
T
1 + vT0 .

From (1.10) and (1.11) it directly follows that the vectors u0, u1, v0, and v1 are related
by the conditions [16]

(1.12) vT0 u0 = 0, vT1 u0 = vT0 u1 6= 0.

In the case of a double eigenvalue we have expansions [16, 11]

(1.13)
λ = λ0 + ε1/2λ1 + ε λ2 + ε3/2λ3 + · · · ,
u = u0 + ε1/2w1 + εw2 + ε3/2w3 + · · · .

Substituting (1.13) and (1.2) into (1.1) and using (1.10)–(1.12) we obtain expressions
for determining λ1 and λ2:

(1.14)

λ1 = ±
√
vT0 A1u0

vT0 u1
,

λ2 =
vT0 A1u1 + vT1 A1u0 − λ2

1 v
T
1 u1

2 vT0 u1
.

Expressions (1.13), (1.14) are correct if vT0 A1u0 6= 0 (the condition Γ in [16]).
Note that the vectors u0 and v0 are defined up to arbitrary nonzero multipliers;

the vectors u1 and v1 are defined up to additive terms αu0 and βv0, respectively,
where α and β are arbitrary constants. However, the values of λ1 and λ2 in (1.14)
don’t depend on the way that the vectors u0, u1, v0, and v1 are chosen.

Assuming that the vectors u0, u1 are fixed we use the following normalization
conditions for v0 and v1:

(1.15) vT0 u1 = 1, vT1 u1 = 0.

Combining the expressions (1.14) with (1.3), (1.13) and the normalization conditions
(1.15) gives

(1.16) λ = λ0 ±
√

[ (f1, e) + i (q1, e) ] ε+
1

2
[ (f2, e) + i (q2, e) ] ε+ o(ε),

where components of the vectors fj = (f1
j , f2

j , . . . , fnj ), qj = (q1
j , q

2
j , . . . , q

n
j ),

j = 1, 2, are real and imaginary parts of quantities defined by

(1.17)

fs1 + i qs1 = vT0
∂A

∂ps
u0,

fs2 + i qs2 = vT0
∂A

∂ps
u1 + vT1

∂A

∂ps
u0, s = 1, 2, . . . , n.

If λ0 is a real number, then the vectors q1 = q2 = 0.
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1.3. Triple eigenvalue. Consider the case of a triple eigenvalue that is charac-
terized by a Jordan chain of the length 3. This means that there are an eigenvector
u0 and associated vectors u1, u2 satisfying the equations

(1.18)

A0 u0 = λ0 u0,

A0 u1 = λ0 u1 + u0,

A0 u2 = λ0 u2 + u1.

For a left eigenvector v0 and associated vectors v1 and v2 we have

(1.19)

vT0 A0 = λ0 v
T
0 ,

vT1 A0 = λ0 v
T
1 + vT0 ,

vT2 A0 = λ0 v
T
2 + vT1 .

The vectors uj , vj , j = 1, 2, 3, are related by the conditions

(1.20)

vT0 u0 = vT0 u1 = vT1 u0 = 0,

vT0 u2 = vT1 u1 = vT2 u0 6= 0,

vT1 u2 = vT2 u1.

These conditions can be proved by means of (1.18), (1.19). Assuming that the vectors
uj , j = 1, 2, 3, are fixed we use the following normalization conditions for the vectors
vj , j = 1, 2, 3:

(1.21) vT0 u2 = 1, vT1 u2 = vT2 u2 = 0.

These conditions define the vectors vj , j = 1, 2, 3, uniquely.
The eigenvalue λ0 generally splits to three simple eigenvalues due to perturbation

of parameters. Then eigenvalues and eigenvectors can be given in the form [16, 11]

(1.22)
λ = λ0 + ε1/3λ1 + ε2/3λ2 + ε λ3 + +ε4/3λ4 + · · · ,
u = u0 + ε1/3w1 + ε2/3w2 + εw3 + ε4/3w4 + · · · .

Substituting expansions (1.22) and (1.2) into (1.1) and using (1.18)–(1.21) we
obtain expressions for the first three coefficients λj , j = 1, 2, 3:

(1.23)

λ1 = 3

√
vT0 A1u0,

λ2 =
vT0 A1u1 + vT1 A1u0

3λ1
,

λ3 =
1

3

(
vT0 A1u2 + vT1 A1u1 + vT2 A1u0

)
.

These expressions are correct if vT0 A1u0 6= 0 (the condition Γ in [16]). In this case
the first expression of (1.23) defines three different complex roots λ1. Then values of
λ2 and λ3 are determined for each root λ1 from the second and third expressions of
(1.23).

Combining expressions (1.23) with (1.22) and (1.3) gives

(1.24)

λ = λ0 + 3
√

[ (h1, e) + i (t1, e) ] ε

+
(h2, e) + i (t2, e)

3 3
√

(h1, e) + i (t1, e)
ε2/3 +

1

3
[ (h3, e) + i (t3, e) ] ε+ o(ε),



ON SINGULARITIES OF A BOUNDARY OF THE STABILITY DOMAIN 111

where components of the vectors hj = (h1
j , h

2
j , . . . , hnj ), tj = (t1j , t

2
j , . . . , tnj ),

j = 1, 2, 3, are real and imaginary parts of the quantities

(1.25)

hs1 + i ts1 = vT0
∂A

∂ps
u0,

hs2 + i ts2 = vT0
∂A

∂ps
u1 + vT1

∂A

∂ps
u0,

hs3 + i ts3 = vT0
∂A

∂ps
u2 + vT1

∂A

∂ps
u1 + vT2

∂A

∂ps
u0,

s = 1, 2, . . . , n.

The cubic roots in the second and third terms of the right-hand side of (1.24) are the
same and take three different complex values.

If λ0 is a real number, then the vectors tj = 0, j = 1, 2, 3.

2. One- and two-parameter families of matrices. Let us consider a linear
evolutionary system of the form

(2.1) ẏ = Ay,

where A is a real autonomous m × m matrix and y is a real vector of dimension
m. The system is stable (asymptotically stable) if all eigenvalues λ of the matrix A
have negative real parts, Reλ < 0. If there exists at least one eigenvalue such that
Reλ > 0, the system is unstable. If there are some eigenvalues with Reλ = 0 while
for all others Reλ < 0, we have a boundary point.

A family of matrices is a mapping A : Λ −→ Rm2

of the parameter space into
the space of matrices. The set of values p ∈ Λ, such that A(p) is a stable matrix, is
called the stability domain. First, let us consider a one-parameter family A(p), p ∈R.
The stability domain boundary of a generic one-parameter family is characterized by
one simple eigenvalue λ = 0 or by one pair of complex-conjugate simple eigenvalues
λ = ±i ω of the matrix A [3, 4]. In the technical literature these cases are called
divergence and flutter boundaries, respectively.

Using (1.9) we have

(2.2) Reλ = r (p− p0) + o(p− p0)

for a simple eigenvalue λ in the neighborhood of the stability boundary point p0,
Reλ0 = 0. Hence, location of the stability and instability domains is determined by
the sign of the quantity

r = Re
[(
vT0 dA/dp u0

)/(
vT0 u0

)]
.

For example, if r > 0, then the system is stable (Re λ < 0) at p < p0 and unstable
(Re λ > 0) at p > p0 for p sufficiently close to p0. Note that r 6= 0 in the generic case,
i.e., the case r = 0 can be removed by an arbitrarily small shift of the family.

In the case of a two-parameter generic family A(p), p ∈ R2, the stability boundary
is a smooth curve whose only singularities are corners. The curve in nonsingular
points is characterized by a simple eigenvalue λ = 0 or a simple pair λ = ±i ω
and has a normal vector r defined in (1.8). From (1.9) it follows that the normal
r lies in the instability domain. The corners correspond to matrices A(p) of the
three following types (strata) [3, 4, 5]: F1(0

2)—double eigenvalue λ = 0 with the
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Fig. 2.1. A corner of the stability domain.

corresponding Jordan block of the order 2; F2(0, ±i ω)— simple eigenvalues 0, ±i ω;
F3(±i ω1, ±i ω2)—two pairs of simple different eigenvalues ±i ω1, ±i ω2. Other types
of singularities can be destroyed by an arbitrarily small shift of the family.

Using expansions (1.16) for a double eigenvalue λ0 = 0 we have

(2.3) λ = ±
√

(f1, e) ε+
1

2
(f2, e) ε+ o(ε),

where vectors f1 and f2 are defined by means of (1.17) and e is a vector of variation
(direction). In the generic case the vectors f1 and f2 are linearly independent. For
an arbitrary fixed vector e, such that (f1, e) < 0 and (f2, e) < 0, we have Reλ < 0
(stability) for sufficiently small ε. If at least one of these inequalities has the opposite
sign, we have Reλ > 0 (instability).

For the following presentation we need a concept of tangent cone. A tangent
cone to the stability domain at the boundary point is a set of direction vectors of the
curves starting at this point and lying in the stability domain [9]. A tangent cone
is nondegenerate if it cuts out on a sphere a set of nonzero measure. Otherwise, the
cone is called degenerate. A tangent cone can be considered as a linear approximation
of the stability domain.

In accordance with (2.3) a tangent cone at the boundary point corresponding to
the stratum F1(0

2) takes the form

(2.4) KF1 =
{
e : (f1, e) ≤ 0, (f2, e) ≤ 0

}
.

Using expression (2.2) for a simple eigenvalue we similarly obtain tangent cones
at boundary points corresponding to the strata F2(0, ±i ω) and F3(±i ω1, ±i ω2):

(2.5) KF2
=
{
e : (r0, e) ≤ 0, (r, e) ≤ 0

}
,

(2.6) KF3
=
{
e : (r1, e) ≤ 0, (r2, e) ≤ 0

}
.

Here the vectors r0, r, r1, r2 correspond to the simple eigenvalues 0, ±i ω, ±i ω1,
±i ω2, respectively, and are calculated using (1.8). In the generic case the vectors r,
r0 and also r1, r2 are linearly independent.

Using the relations (2.4)–(2.6) for tangent cones we can find tangent vectors to
the stability boundary. For example, in the case of a singular point of the type F1
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Fig. 3.1. The stability domain of equilibrium of the voltaic arc in electric circuit.

tangent vectors g1 and g2 can be found from the following system of linear equations
(see Figure 2.1):

(2.7) (fi, gj) = −δij , i, j = 1, 2,

where δij is Kronecker’s delta and f1, f2 are the vectors from (2.4).
The inequalities in (2.4)–(2.6) define an intersection of two halfplanes. Hence,

the stability domain wedges into the instability domain with the angle of wedge less
than π; see Figure 2.1. This is a quantitative justification of the Arnold’s principle of
“fragility of all good things” [3, 4, 5] and quasi convexity of the stability domain [9].

3. Example: Stability of equilibrium of a voltaic arc in electric circuit.
As an example let us consider a stability problem of equilibrium of a circuit consisting
of a voltaic arc, resister R, inductance L, and shunting capacitor C connected in series.
Linearized differential equations near the equilibrium of the system have the form [1]

(3.1)

d ξ

d t
= −ρξ

L
+

η

L
,

d η

d t
= − ξ

C
− η

RC
,

where ξ(t), η(t) are, respectively, an electric current and a voltage in the voltaic arc,
and ρ is a resistance of the arc.

The system (3.1) depends on four parameters: three positive quantities L, C, R
and parameter ρ, which can take both positive and negative values. Assuming that
the parameters L and C are fixed, we consider the stability problem on the plane of
two parameters: p1 = R and p2 = ρ. The matrix A corresponding to the system (3.1)
is

(3.2) A =

− ρ

L

1

L

− 1

C
− 1

CR

 .

The characteristic equation of the system takes the form

(3.3) λ2 +

(
1

RC
+

ρ

L

)
λ+

1

LC

( ρ
R

+ 1
)

= 0.
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Fig. 4.1. Singularities of the stability boundary of a three-parameter generic family.

At the point R0 =
√
L/C, ρ0 = −√L/C the characteristic equation (3.3) has a

double root λ0 = 0 with the length of the Jordan chain equal to 2. The equations for
Jordan chains (1.10), (1.11) yield at this point

u0 =

(
1

−√L/C

)
, u1 =

(
0

L

)
, v0 =

(
1/
√
LC

1/L

)
, v1 =

(
1

0

)
.

Using these vectors and the matrix A from (3.2) we calculate the vectors f1 and
f2 according to (1.17):

(3.4) f1 = − 1

L
√
LC

(
1

1

)
, f2 =

1

L

(
1

−1

)
.

Thus, we have found the tangent cone (2.4) to the stability domain at the point
R = R0, ρ = ρ0; see Figure 3.1. The tangent vectors to the stability boundary (2.7)
up to a positive factor are g1 = (1, 1)T , g2 = (−1, 1)T . Hence, the angle of the
wedge of the stability domain is equal to π/2. This result is in accordance with [1],
where it has been shown that the stability boundary consists of the line ρ = −R,
0 ≤ R ≤√L/C and the hyperbola ρ = −L/(CR),

√
L/C ≤ R; see Figure 3.1.

4. Three-parameter family of matrices. Consider a generic three-parameter
family of matrices A(p), p ∈R3. The stability domain boundary of the family is a
smooth surface characterized by one simple eigenvalue λ = 0 or a pair of simple
eigenvalues λ = ±i ω [3, 4]. The normal vector r to this surface is defined by the
relation (1.8) in the same way as in the two-parameter case. The vector r lies in the
instability domain. According to [3, 4] the only singularities of the stability boundary
of a generic three-parameter family are of four types: dihedral angle, trihedral angle,
deadlock of an edge, and break of an edge; see Figure 4.1.
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Fig. 4.2. An edge of the stability domain.

The dihedral angle singularity is connected with the strata F1(0
2), F2(0, ±i ω),

F3(±i ω1, ±i ω2) examined in section 2. Therefore tangent cones to the stability do-
main at these singular points are determined by the relations (2.4)–(2.6), respectively.

The tangent cone KF1
can be written in a more suitable form introducing vectors

g1, g2, g3 by the equations

(4.1) (fi, gj) = −δij , i = 1, 2, j = 1, 2, 3,

where f1, f2 are the vectors from (2.4). The equations (4.1) are solvable because
the vectors f1 and f2 are linearly independent for a generic family. The vector g3 is
directed along the edge and the vectors g1, g2 are tangent to the sides of the dihedral
angle; see Figure 4.2. Using these vectors the set (2.4) can be written in the form

(4.2) KF1 =
{
e : e = α g1 + β g2 + γ g3; α, β, γ ∈ R, α ≥ 0, β ≥ 0

}
.

Substituting the expression e = α g1 + β g2 + γ g3 into (2.4) and using (4.1) we find
(f1, e) = −α ≤ 0, (f2, e) = −β ≤ 0. It proves the representation (4.2). Similar
representations can be obtained for the tangent cones KF2

and KF3
using in (4.1) the

vectors r0, r and r1, r2 instead of f1, f2, respectively.
The trihedral angle singularity is characterized by the following strata [3, 4]:

G3(0
2, ±i ω)—a double eigenvalue λ = 0 with the length of the Jordan chain equal to

2 and a pair of simple pure imaginary eigenvalues; G4(0, ±i ω1, ±i ω2)—simple λ = 0
and two different pairs of simple pure imaginary eigenvalues; G5(±i ω1, ±i ω2, ±i ω3)—
three different pairs of simple pure imaginary eigenvalues.

Note that these strata differ from the strata F1, F2, F3 by the presence of an
additional pair of simple eigenvalues of the type λ = ±i ω. Therefore tangent cones
at the boundary points of these types, similarly to (2.4)–(2.6), can be written in the
form

(4.3) KG3 =
{
e : (f1, e) ≤ 0, (f2, e) ≤ 0, (r, e) ≤ 0

}
,

(4.4) KG4 =
{
e : (r0, e) ≤ 0, (r1, e) ≤ 0, (r2, e) ≤ 0

}
,

(4.5) KG5
=
{
e : (r1, e) ≤ 0, (r2, e) ≤ 0, (r3, e) ≤ 0

}
,

where the vectors r0, r, rj , j = 1, 2, 3 correspond to the eigenvalues 0, ±i ω, ±i ωj ,
j = 1, 2, 3, respectively, and are defined in (1.8). The vectors f1 and f2 correspond
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Fig. 4.3. The singularity trihedral angle.

to the double eigenvalue λ = 0 and are defined in (1.17). The sets (4.3)–(4.5) describe
a trihedral angle, which is located entirely in a closed half-space; see Figure 4.3.

As in (4.1), using the vectors determining the cones, we can find vectors g1, g2,
g3 tangential to the edges of the trihedral angle; see Figure 4.3. For example, for the
singular point of the type G5 we have

(4.6) (ri, gj) = −δij , i, j = 1, 2, 3,

where rj , j = 1, 2, 3 are the vectors from (4.5). With the use of these vectors the
tangent cone KG5

can be described in the following way:

(4.7) KG5 =
{
e : e = α g1 + β g2 + γ g3; α, β, γ ≥ 0

}
.

Similar representations can be deduced for the cones KG3
and KG4

.
Note that the vectors determining dihedral and trihedral angles are linearly in-

dependent for a generic family.
Singularity deadlock of an edge is characterized by the stratum G2

(
(±i ω)2

)
—a

pair of double pure imaginary eigenvalues λ = ±i ω with the length of the Jordan
chain equal to 2. It is well known that the stability domain in the neighborhood of
this singularity up to a smooth change of parameters (diffeomorphism) is given by
[3, 4]

(4.8) z +
∣∣∣Re

√
x+ i y

∣∣∣ < 0.

The stability boundary of (4.8) is a half of the so-called Witney–Cayley umbrella
surface [4, 5]. The tangent cone to the domain (4.8) at the singular point G2, i.e., at
x = y = z = 0, is degenerate and represents a plane angle

K0
G2

=
{
e = (e1, e2, e3) : e1 ≤ 0, e2 = 0, e3 ≤ 0

}
.

Note that the singularity G2 is formed by a collision of two different simple pure
imaginary eigenvalues i ω1 and i ω2 at the singular point when they move along the
edge of the type F3.

Let us calculate the tangent cone for G2 in the generic case. Using the expansions
(1.16) for a double eigenvalue λ = i ω we have

(4.9) λ = i ω ±
√

[ (f1, e) + i (q1, e) ] ε+
1

2
[ (f2, e) + i (q2, e) ] ε+ o(ε),
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Fig. 4.4. The singularity deadlock of an edge.

where the vectors f1, q1, f2, q2 correspond to λ = i ω and are defined in (1.17).
The expansions for a complex-conjugate double eigenvalue λ = −i ω can be found by
taking complex conjugation of (4.9).

If either (f1, e) > 0 or (q1, e) 6= 0 under the radical in (4.9), then one of the
eigenvalues has positive real part for sufficiently small ε (instability). In the case
when (f1, e) < 0, (q1, e) = 0, the second (with the radical) term is a pure imaginary
number. Hence, for (f2, e) < 0 and small ε we have Reλ < 0 (stability) and for
(f2, e) > 0 we have Reλ > 0 (instability). Therefore, the tangent cone to the stability
domain at a singular point G2 is the plane angle of the form

(4.10) KG2
=
{
e : (f1, e) ≤ 0, (f2, e) ≤ 0, (q1, e) = 0

}
.

From (4.9) it directly follows that all smooth curves, emitted from the singular
point along the direction e, satisfying the conditions (f1, e) < 0, (f2, e) < 0, (q1, e) =
0, lie in the stability domain for rather small ε.

Determining the vectors g1, g2 by

(fi, gj) = −δij , (q1, gj) = 0, i, j = 1, 2,

we can write (4.10) in the form

(4.11) KG2 =
{
e : e = α g1 + β g2; α, β ≥ 0

}
.

The vectors g1 and g2 are directed along the sides of the plane angle KG2
. The vector

g1 is tangent to the edge F3 of the stability domain characterized by two different
pairs of simple eigenvalues ±i ω1, ±i ω2; see Figure 4.4.

Note, that the vectors f1, f2, q1 are linearly independent for a generic family of
matrices.

5. Singularity break of an edge. The singularity break of an edge is charac-
terized by the stratum G1(0

3)—by one triple zero eigenvalue of the matrix A(p0) with
the Jordan chain of the length equal to 3. The expansion of a triple eigenvalue is de-
scribed by (1.24). The cubic root in (1.24) takes three different complex values. This
means that if (h1, e) 6= 0 (note that t1 = 0 since λ0 = 0), then at least one eigenvalue
has positive real part (instability). Hence, the tangent cone to the stability domain
lies in the plane (h1, e) = 0, where the expansion (1.24) is not valid due to violation of
the Γ condition vT0 A1u0 = (h1, e) 6= 0. Therefore the tangent cone in this case cannot
be found with the method used for the investigation of the previous singularities. For
this reason we take another approach to study this singularity.
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Fig. 5.1. The singularity break of an edge.

Let us construct a versal deformation of the matrix A0 = A(p0) that is a smooth
matrix family A′(p′), p′ ∈ Rd, such that any smooth family A(p), A(p0) = A0, can
be represented in a neighborhood of p = p0 in the form

(5.1) A(p) = C(p)A′(ϕ(p))C−1(p),

where C(p) is a smooth family of nonsingular matrices, p′ = ϕ(p) is a smooth map-
ping from a neighborhood of the point p0 in R3 into a neighborhood of the origin
of coordinate system in Rd, and ϕ1(p0) = ϕ2(p0) = · · · = ϕd(p0) = 0. A versal
deformation with the minimum possible number of parameters d is called miniversal
one. The miniversal deformation of the matrix A0 can be chosen in the block diagonal
form [2, 7]

(5.2) A′(p′) = A′(0) +B(p′).

Here A′(0) is the Jordan form of A0 and B(p′) is a family of block diagonal matrices
whose blocks are determined in accordance with the structure of A′(0). The first
block of A′(p′) corresponding to the triple zero eigenvalue (03) can be taken in the
form

(5.3)

 0 1 0
0 0 1
0 0 0

+

 0 0 0
0 0 0
p′1 p′2 p′3

 .

The other blocks correspond to eigenvalues with negative real parts. Due to (5.1)
the characteristic equations for the matrices A(p) and A′(p′), p′ = ϕ(p), coincide
identically. Stability of the matrix A′(p′) in a neighborhood of the point p′ = 0 is
determined by the first block (5.3) due to its block diagonal structure. The character-
istic equation of (5.3) takes the form λ3 − p′3λ

2 − p′2λ− p′1 = 0. The stability domain
of this equation is found using the Routh–Hurwitz conditions

(5.4)
p′1 + p′2p

′
3 > 0,

p′1 < 0, p′2 < 0, p′3 < 0.

This domain in 3-parameter space p′1, p
′
2, p

′
3 is shown in Figure 5.1. Directly from

(5.4) we find that the tangent cone to the stability domain at p′ = 0 is degenerate. It
is defined by the relations

(5.5) e′1 = 0, e′2 ≤ 0, e′3 ≤ 0.
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Let us calculate the vectors h′j , j = 1, 2, 3, defining collapse of a triple zero
eigenvalue of the matrix A′(0). Finding eigenvectors and associated vectors u′j , v′j ,
j = 1, 2, 3, satisfying the normalization conditions (1.21), and using (1.25) we obtain

h′1 = (1, 0, 0, 0, . . . , 0)T ,

h′2 = (0, 1, 0, 0, . . . , 0)T ,

h′3 = (0, 0, 1, 0, . . . , 0)T .

By means of these vectors the tangent cone (5.5) can be given in the form

(5.6) K ′
G1

=
{
e′ ∈ Rd : (h′1, e

′) = 0, (h′2, e
′) ≤ 0, (h′3, e

′) ≤ 0
}
.

Let us determine a tangent cone for the family A(p). For this purpose we have to
find a relation between the vectors h′j and hj , j = 1, 2, 3. Let u′j , v′j , j = 0, 1, 2, be
left and right eigenvectors and associated vectors of the matrix A′(0), corresponding
to the triple eigenvalue λ0 = 0 and satisfying the normalization conditions (1.21).
Then, using (5.1) we get relations between u′j , v′j , j = 1, 2, 3, and eigenvectors and
associated vectors uj , vj , j = 1, 2, 3, of the matrix A0

(5.7)
uj = C(p0)u

′
j ,

vTj = v′Tj C−1(p0) , j = 0, 1, 2.

We differentiate the expression (5.1) with respect to pj and find the value of the
derivative at p = p0, p′ = ϕ(p0) = 0,

(5.8)
∂A

∂pj
=

∂C

∂pj
A′C−1 + CA′

∂C−1

∂pj
+

d∑
s=1

(
C
∂A′

∂p′s
C−1

)
∂ϕs
∂pj

, j = 1, 2, 3.

Multiplying (5.8) by vT0 and u0 from left and right, respectively, we have

(5.9)

hj1 = vT0
∂A

∂pj
u0 = vT0

∂C

∂pj
A′C−1u0

+ vT0 CA
′ ∂C

−1

∂pj
u0 +

d∑
s=1

vT0 C
∂A′

∂p′s

∂ϕs
∂pj

C−1u0

=

d∑
s=1

∂ϕs
∂pj

[
v′T0

∂A′

∂p′s
u′0

]
, j = 1, 2, 3.

Here we have used the relations (5.7) and A′(0)u′0 = 0, v′T0 A′(0) = 0. Thus, from
(5.9) we get the relation between the vectors h1 and h′1:

hT1 = h′T1 Dϕ, Dϕ =

[
∂ϕi
∂pj

]
, i = 1, 2, . . . , d, j = 1, 2, 3.

Analogously, we can prove this relation for the vectors h2, h
′
2 and h3, h

′
3. In this

proof expressions (5.7), (5.8), and the equalities

vTs
∂C

∂pi
C−1uj + vTs C

∂C−1

∂pi
uj = vTs

∂CC−1

∂pi
uj = 0,

i = 1, 2, . . . , n, s, j = 0, 1,
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are used. Thus, the vectors hs and h′s are related by

(5.10) hTs = h′Ts Dϕ, s = 1, 2, 3.

Now we find a relation between direction vectors e and e′ from the tangent cones
in R3 and Rd, respectively:

e′i =
∂p′i
dε

=
d∑

j=1

∂ϕi
∂pj

dpj
dε

=
d∑

j=1

∂ϕi
∂pj

ej , i = 1, 2, . . . , d , j = 1, 2, 3.

Consequently,

(5.11) e′ = Dϕe.

Any curve p(ε), p(0) = p0, with the direction e = dp/dε, lying in the stability
domain, corresponds to a curve p′(ε) = ϕ(p(ε)) with the direction e′ = Dϕe lying in
the stability domain in Rd. Similarly, for any curve p′(ε), p′(0) = 0, dp′/dε = e′,
lying in the stability domain in Rd, in the case of linearly independent vectors hs,
s = 1, 2, 3, there exist curves p(ε), p(0) = p0, with directions e, related to e′ by (5.11),
and lying in the stability domain. In the case of the generic family of matrices A(p)
the vectors hs, s = 1, 2, 3, are linearly independent.

Multiplying (5.10) by e and using (5.11) we obtain

(5.12) hTs e = h′Ts e′, s = 1, 2, 3.

Using (5.6) and (5.12) we find the tangent cone to the stability domain at the singular
point G1(0

3) in the form

(5.13) KG1
=
{
e : (h1, e) = 0, (h2, e) ≤ 0, (h3, e) ≤ 0

}
.

The tangent cone KG1 is degenerate and represents a plane angle. Recall that
the vectors hs, s = 1, 2, 3, determining the cone, are defined by (1.25) and need only
eigenvectors and associated vectors corresponding to the triple zero eigenvalue and
the derivatives of A with respect to pj , j = 1, 2, 3, at the point under consideration.

Introducing the vectors g1, g2 by formulae

(gj , h4−s) = −δjs, j = 1, 2, s = 1, 2, 3,

the tangent cone KG1
can be written in the form

KG1 =
{
e : e = αg1 + βg2, α, β ≥ 0

}
,

where the vectors g1, g2 are tangent to the edges of the singularity.

6. A simple model of a damped follower force column. A simple, two-
degrees-of-freedom pendulum loaded by a follower force P has been studied by Ziegler
[17] and in the present extended version with two different damping parameters by
Herrmann and Jong [8]. Boundary surface of the stability domain of this system was
plotted and studied by Seyranian and Pedersen [15]. We consider this example from
the point of view of singularities of the stability boundary and show that the effects
known as destabilization due to damping [8] and uncertainty of the critical load when
damping parameters tend to zero [14, 15] are closely related to the deadlock of an
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edge singularity, which takes place at the point of the critical load of the system with
no damping, and the dihedral angle singularity at lower values of the load.

The linearized equations of free motion of the pendulum in nondimensional vari-
ables are [8]

(6.1)

(
3 1
1 1

)(
ϕ̈1

ϕ̈2

)
+

(
γ1 + γ2 −γ2

−γ2 γ2

)(
ϕ̇1

ϕ̇2

)

+

(
2− p −1 + p
−1 1

)(
ϕ1

ϕ2

)
=

(
0

0

)
,

where γ1 and γ2 are independent nonnegative damping parameters and p is a magni-
tude of the follower force.

Introducing variables ϕ3 = ϕ̇1 and ϕ4 = ϕ̇2, (6.1) takes the form

(6.2) ϕ̇ = Aϕ, ϕ = (ϕ1, ϕ2, ϕ3, ϕ4)
T ,

(6.3) A =


0 0 1 0
0 0 0 1

p/2− 3/2 1− p/2 −γ1/2− γ2 γ2

5/2− p/2 p/2− 2 γ1/2 + 2γ2 −2γ2

 .

We investigate the stability domain of the system in the space of three parameters
(γ1, γ2, p). The characteristic equation of the system (6.2), (6.3) is

(6.4) 2λ4 + (γ1 + 6γ2)λ
3 + (7− 2p+ γ1γ2)λ

2 + (γ1 + γ2)λ+ 1 = 0.

At γ1 = γ2 = 0 (the system without damping) we find

(6.5) λ2 =
1

2

(
p− 7/2±

√
(p− 7/2)2 − 2

)
.

Hence at p ∈ [0, 7/2 − √2) we have two different pairs of simple complex conjugate
imaginary eigenvalues corresponding to the dihedral angle singularity (F3). At p0 =
7/2−√2 there exists a pair of double complex conjugate imaginary eigenvalues with
the Jordan chain (1.10), corresponding to the singularity deadlock of an edge (G2).
Thus, the segment γ1 = γ2 = 0, p ∈ [0, p0] is an edge of the stability boundary with
the deadlock at the point p = p0; see Figure 6.1.

At the point γ1 = γ2 = 0, p ∈ [0, p0) the tangent cone KF3
(p) has been deter-

mined in (2.6). The vectors r1 and r2, given by (1.8), for the matrix A from (6.3)
take the form

(6.6) r1,2(p) =
1

8


± 3/2− p√

(p− 7/2)2 − 2
− 1

± 19− 6p√
(p− 7/2)2 − 2

− 6

0

 ,

where plus corresponds to r1 and minus to r2. The angle between r1 and r2 (equal
to the difference of π and the angle of the dihedron) increases with the increase of
p from zero and reaches π at p = p0. But at p = p0 the vectors r1 and r2 become
infinite because the radicand in (6.6) is equal to zero. Therefore the tangent cone KF3
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Fig. 6.1. The stability domain of Ziegler’s double pendulum.

degenerates into the cone KG2
of the deadlock of an edge singularity at p = p0; see

Figure 6.1.
The cone KG2 has been found in (4.10), where the vectors f1, q1, f2 are given by

(1.17). For the matrix (6.3) they are, up to a positive factor, equal to

(6.7)

f1 = (0, 0, 1),

q1 = (1,−4− 5
√

2, 0),

f2 = (−1,−6, 0).

This cone also can be written in the form

(6.8) KG2 =
{

(e1, e2, e3) : e1 = (4 + 5
√

2)e2, e2 ≥ 0, e3 ≤ 0
}
.

In the parameter space (γ1, γ2, p) it represents a plane angle.
At fixed values of damping parameters γ1, γ2 a critical load pcr is defined as the

smallest value of p at which the system becomes unstable. Consider damping in the
form γ1 = e1ε, γ2 = e2ε, where ε is a small positive number. Since the segment
γ1 = γ2 = 0, p ∈ [0, p0] is the edge of the stability boundary, the limit of the critical
load, when damping tends to zero, pe0 = limε→0 pcr(γ1, γ2) for a fixed direction (e1, e2)
is equal to the value of p at which the vector e = (e1, e2, 0) leaves the tangent cone
KF3

(p) with the increase of p from zero. In this case either the condition (r1(p
e
0), e) = 0

or (r2(p
e
0), e) = 0 is fulfilled. For example, at γ1 = ε, γ2 = 0 we have e = (1, 0, 0),

pe0 = 2, r2(2) = (0,−5/2, 0), (r2(2), e) = 0. From this it is seen that the limit of the
critical load pe0 is different for various directions (e1, e2). For all (e1, e2) 6= c(4+5

√
2, 1),

c > 0, this limit is less then p0. At (e1, e2) = c(4+5
√

2, 1), c > 0, we have pe0 = p0. It
is connected with the fact that the directions c(4 + 5

√
2, 1, α), α ≤ 0, c > 0, belong

to the tangent cone KG2
from (6.8).

Degeneration of the dihedral angle at the deadlock of an edge singular point
geometrically illustrates the effects of destabilization of a nonconservative system
by small dissipative forces [8] and uncertainty of the critical load when damping
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parameters tend to zero [14]. Similar effects should be expected for other systems
with deadlock of an edge and break of an edge singularities of the stability boundary.

7. Family of polynomials. Consider a linear homogeneous differential equation
of the order m

(7.1) x(m) + a1x
(m−1) + · · ·+ amx = 0

whose coefficients aj ∈ R, j = 1, 2, . . . ,m smoothly depend on a vector of parameters
p ∈ Rn. The characteristic equation for (7.1) is

(7.2) λm + a1λ
m−1 + · · ·+ am = 0.

The trivial solution of (7.1) is asymptotically stable if and only if every root of
(7.2) has a negative real part Reλ < 0.

The stability domain boundary of a generic one-parameter family of polynomials
(n = 1) is characterized by a simple root λ = 0 or a pair of simple imaginary roots
λ = ±i ω. The stability boundary of a generic two-parameter (three-parameter) family
consists of smooth curves (surfaces), corresponding to simple roots λ = 0 or λ = ±i ω,
whose only singularities are characterized by the following strata [10]:

(7.3)

n = 2 : F̂1(0
2), F̂2(0,±i ω), F̂3(±i ω1,±i ω2),

n = 3 : F̂1(0
2), F̂2(0,±i ω), F̂3(±i ω1,±i ω2), Ĝ1(0

3),

Ĝ2

(
(±i ω)2

)
, Ĝ3(0

2,±i ω), Ĝ4(0,±i ω1,±i ω2),

Ĝ5(±i ω1,±i ω2,±i ω3),

where all imaginary roots at the singular point are taken in brackets with a power
denoting the multiplicity of a root. Other singularities disappear under an arbitrary
small deformation of the family.

Introducing the vector y ∈ Rm, with the components yi = x(i−1), i = 1, 2, . . . ,m,
(7.1) takes the form

(7.4) ẏ = Ay,

(7.5) A =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
−am −am−1 −am−2 · · · −a1

 .

The characteristic equation for the matrix (7.5) is identically equal to (7.2); hence
the stability domains for (7.1) and (7.4) coincide. For every root λ0 of (7.2) there
exists precisely one corresponding eigenvector u0,

u0 = c(1, λ0, λ
2
0, . . . , λ

m−1
0 ), c = const.

For every multiple root λ0 there exists one corresponding Jordan chain with the
length equal to the multiplicity of λ0. It is easy to see that in the case of generic one-
, two-, and three-parameter families the singularities of the stability boundary F̂j ,
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Ĝs, j = 1, 2, 3, s = 1, 2, . . . , 5, for polynomials coincide with the singularities Fj , Gs,
j = 1, 2, 3, s = 1, 2, . . . , 5, for matrices, studied above. All the results for tangent cones
and other geometric characteristics of singularities, obtained for families of matrices,
are directly transferred to families of polynomials. The tangent cones to the stability
domain of (7.1) at singular points (7.3) are determined in (2.4)–(2.6), (4.3)–(4.5),
(4.10), (5.13), where the vectors rj , fj , qj , hj are calculated by the formulae (1.8),
(1.17), (1.25) for the matrix (7.5).

Let us find the expressions for these vectors by means of the coefficients aj ,
j = 1, 2, . . . ,m, of the equation (7.1). Denoting Q(λ, p) = λm + a1λ

m−1 + · · · + am
and differentiating the equation Q(λ, p) = 0 for a simple root λ (Q = 0, ∂Q/∂λ 6= 0)
we have

∂Q

∂λ
dλ+ (∇Q, dp) = 0,

∇λ = −∇Q
/∂Q

∂λ
,

where ∇ is the gradient operator

∇ =

(
∂

∂p1
,
∂

∂p2
, . . . ,

∂

∂pn

)T

.

Recall that the vector r, determined in (1.8), is the gradient of the real part of a
simple eigenvalue with respect to p. Hence,

(7.6) r = −Re

(
∇Q

/∂Q

∂λ

)
.

Substituting the expression for Q(λ, p) into (7.6) we obtain

(7.7) r = −Re

m∑
j=1

∇ajλm−j

mλm−1 +
m−1∑
j=1

(m− j)ajλ
m−j−1

.

For the simple root λ = 0 (am = 0, am−1 6= 0) it gives

(7.8) r = −∇am
am−1

.

Consider a double root λ0. The vectors fj , qj , j = 1, 2, determined by (1.17),
describe collapse of a double eigenvalue with the Jordan chain (1.10). Expanding
Q(λ, p) in Taylor series in the neighborhood of λ = λ0, p = p0 we have

(7.9)

Q(λ, p) = (∇Q,∆p) +
1

2

∂2Q

∂λ2
∆λ2 +

(
∇∂Q

∂λ
,∆p

)
∆λ

+
1

2
∆pT∇∇TQ∆p+

1

6

∂3Q

∂λ3
∆λ3 + · · · ,

∆λ = λ− λ0, ∆p = p− p0.
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Here the equalities Q = 0, ∂Q/∂λ = 0 at λ = λ0, p = p0, determining a double root,
were used. We substitute the perturbation of p in the form ∆p = εe+O(ε2) and the
expansion for λ (1.13) into (7.9) and then equate the coefficients at ε and ε3/2 zero.
As the result, for the coefficient at ε we get

(∇Q, e) +
1

2

∂2Q

∂λ2
λ2

1 = 0,

λ2
1 = −2(∇Q, e)

∂2Q

∂λ2

.

If λ2
1 6= 0, then equating the coefficient at ε3/2 zero we obtain

λ2 = −

(
∇∂Q

∂λ
, e

)
+

1

6

∂3Q

∂λ3
λ2

1

∂2Q

∂λ2

=

1

3

∂3Q

∂λ3
(∇Q, e)− ∂2Q

∂λ2

(
∇∂Q

∂λ
, e

)
(
∂2Q

∂λ2

)2 .

Note that ∂2Q/∂λ2 6= 0 for a double root. Thus, for the vectors fj , qj , j = 1, 2,
we get the following expressions:

(7.10)

f1 + i q1 = −2∇Q
∂2Q

∂λ2

,

f2 + i q2 =

2

3

∂3Q

∂λ3
∇Q− 2

∂2Q

∂λ2
∇∂Q

∂λ(
∂2Q

∂λ2

)2 .

Substituting the explicit form of Q(λ, p) into (7.10), by analogy with (7.7), the
expression (7.10) can be written by means of the coefficients aj(p), j = 1, 2, . . . ,m,
and λ0. In the case of the double root λ0 = 0 we get

(7.11)

f1 = −∇am
am−2

,

f2 =
am−3∇am − am−2∇am−1

a2
m−2

.

The vectors hj , j = 1, 2, 3, used for determining the tangent cone KG1 , are
needed only for λ0 = 0. In this case am = am−1 = am−2 = 0, am−3 6= 0. The left
and right eigenvectors and the associated vectors of the matrix (7.5), corresponding
to the triple zero root and satisfying the normalization conditions (1.21), are

u0 = (1, 0, 0, 0, . . . , 0)T ,
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u1 = (0, 1, 0, 0, . . . , 0)T ,

u2 = (0, 0, 1, 0, . . . , 0)T ,

v0 =

(
0, 0, 1, ∗, . . . , ∗, 1

am−3

)T

,

v1 =

(
0, 1, 0, ∗, . . . , ∗,−am−4

a2
m−3

)T

,

v2 =

(
1, 0, 0, ∗, . . . , ∗, a

2
m−4 − am−3am−5

a3
m−3

)T

,

where asterisks denote the components, which don’t affect the resultant expressions.
Substitution of these vectors into (1.25) gives

h1 = −∇am
am−3

,

(7.12) h2 =
am−4∇am − am−3∇am−1

a2
m−3

,

h3 =
(am−3am−5 − a2

m−4)∇am + am−3am−4∇am−1 − a2
m−3∇am−2

a3
m−3

.

Note that in the case of the generic family of polynomials, vectors determining
tangent cones to the stability domain at a singular point are linearly independent.

Example. As an example let us consider the stability problem from section 3.
The characteristic equation has the form (3.3). The system is considered as depen-
dent on two parameters R and ρ. At the point R0 =

√
L/C, ρ0 = −√L/C the

characteristic equation (3.3) has the double zero root corresponding to the singularity

F̂1(0
2). The vectors f1 and f2, calculated with the use of (7.11), are

f1 =
1

L
√
LC

(−1

−1

)
, f2 =

1

L

(
1

−1

)
.

These expressions coincide with (3.4), where these vectors were calculated using
(1.17). The tangent cone to the stability domain K

F̂1
at the point under consideration

has the form (2.4); see Figure 3.1.
Also, the results (6.6)–(6.8) on singularities of the stability boundary for Ziegler’s

pendulum can be derived using polynomial formulation (6.4).

8. Concluding remarks. Two methods of investigation of singularities are de-
veloped in this paper. They are constructive and convenient for numerical implemen-
tation. These methods can be applied for studying other types of singularities (also
nongeneric) of the stability domain of systems depending on an arbitrary number of
parameters. The first method connected with expansions of eigenvalues can be applied
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if the tangent cone of the singularity does not belong to the set of directions violating
the condition Γ [16] (for nonderogatory eigenvalue of the matrix A this condition is
v T
0 A1u0 6= 0):

K 6⊂ {e : Γ is not satisfied}.
In this set of directions the expansions of eigenvalues in powers of ε1/l (l is a multi-
plicity) are not valid. For example, this method can be applied to the singularities,
where there are only simple and double eigenvalues with zero real part. Singularities
investigated in sections 2 and 4 are just of this type.

The second method connected with versal deformations can be useful for inves-
tigation of singularities determined by pure imaginary eigenvalues with higher multi-
plicities. The main point here is to find appropriate vectors, like h1, h2, h3 in section
5, which connect parameter space of the problem with parameter space of the versal
deformation.

As an example of application of the second method let us consider the singular
point of the stability domain determined by zero eigenvalue with one Jordan block
of the order k. Let u0, u1, . . . , uk−1 and v0, v1, . . . , vk−1 be corresponding Jordan
chains of right and left eigenvectors and associated vectors satisfying normalization
conditions vT0 uk−1 = 1, vTi uk−1 = 0, i = 1, . . . , k − 1. Then introducing the vectors
hi, i = 1, 2, . . . , k, with components defined by the formulae

hji =
i−1∑
s=0

vTs
∂A

∂pj
ui−s−1, i = 1, 2, ..., k, j = 1, 2, ..., n,

and making the same steps as in the section 5, in the case of linearly independent
vectors hi, i = 1, 2, . . . , k, we get the expression for the tangent cone K0 to the stability
domain at this singular point:

K0 = { e : (h1, e) = · · · = (hk−2, e) = 0, (hk−1, e) ≤ 0, (hk, e) ≤ 0 }.
Note that for k = 3 these expressions are the same as the expressions which have been
found in section 5 for the singularity G1. Evidently, to fulfill the linear independence
condition we need n ≥ k, i.e., the dimension of the parameter space must be greater
than or equal to the multiplicity of zero eigenvalue. If n ≥ k, then the vectors hi,
i = 1, 2, . . . , k, are linearly independent for the generic family of matrices.

To investigate singularities of a boundary of the stability domain of a family of
polynomials, first we have to consider the singularity of the corresponding family of
matrices (7.5) and then express the result in terms of the coefficients of the polynomial
and their derivatives with respect to parameters.
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