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Abstract. Stability boundaries of linear conservative systems smoothly dependent on several
parameters are studied. Generic singularities appearing on the stability boundaries are classified.
Explicit formulae for the approximations to the stability domain at regular and singular points of
the boundary are derived. These formulae use information on the system only at the point under
consideration (eigenvectors and derivatives of the stiffness matrix with respect to parameters). As
an example a buckling problem of a column loaded by an axial force is considered and discussed
in detail.
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Introduction

Let us consider a linear autonomous conservative system of the form

Mÿ + Cy = 0, (1)

where y is an m -dimensional vector of generalized coordinates, M is a positive
definite symmetrical mass matrix, C is a symmetrical stiffness matrix, and dots
denote derivatives with respect to time. The matrices M and C are assumed to
depend smoothly on a vector p = (p1, . . . , pn)T of real parameters.

We seek a solution of equation (1) in the form y = u exp(i
√

λt) . Substitution
of this expression into equation (1) yields the eigenvalue problem

Cu = λMu. (2)

Due to the symmetry of the matrices C and M all eigenvalues λ are real and
semi-simple, that is there are r linearly independent eigenvectors u1, . . . ,ur cor-
responding to the eigenvalue λ with the algebraic multiplicity r . The system
is stable if and only if all the eigenvalues are positive λ > 0 . Note that due
to positive definiteness of the matrix M stability of the system is equivalent to
positive definiteness of the matrix C . If at least one of the eigenvalues is zero
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or negative (the matrix C is not positive definite) the system is unstable. This
stability criterion defines stability and instability domains in the parameter space.

Because of continuous dependence of eigenvalues on parameters a boundary of
the stability domain is determined by the zero eigenvalue, while all other eigenval-
ues are positive. The zero eigenvalue can be simple or multiple (semi-simple). In
the latter case we denote a corresponding boundary point by 0(r) , where r > 1
is the multiplicity of λ = 0 .

Qualitative and quantitative analysis of the stability domains for conservative
systems is a classical subject. It is of great practical importance due to applications
to mechanical and civil engineering problems. Stability domains in the case of
linear dependence of the matrix C on parameters have been studied by Papkovich
[7]. He has shown that the stability boundary can not have convexity toward the
stability domain, and has found a tangent plane to the stability boundary at a
regular point, characterized by a simple zero eigenvalue. However the nature of
singularities of the stability domains connected with multiple eigenvalues has not
been studied and understood in full. Note that an account of Papkovich’s work is
given in [8, 5].

Using Papkovich’s approach Huseyin [5] has shown that the fundamental fre-
quency surface has concavity toward the fundamental region in the case of the
matrix C linearly depending on parameters and constant matrix M .

Singularities that can appear on the stability boundaries or fundamental fre-
quency surfaces are connected with multiple eigenvalues. Arnold [1] has found a
number of parameters required for the appearence of eigenvalues of a given multi-
plicity in the generic (typical) case.

In this paper we consider a general case of smooth dependence of system ma-
trices on parameters. Using the results of Arnold [1] and a perturbation technique
for eigenvalues [3, 9], a classification of singularities of stability boundaries in the
generic case is obtained. A constructive method for quantitative analysis of sin-
gularities is proposed. For regular boundary points a general expression for the
approximation of the stability boundary surface up to the second order terms is
found. At singular (irregular) points tangent cones (first order approximations)
to the stability domain are derived. As an example a buckling problem of a col-
umn loaded by an axial force is studied and the corresponding stability domain is
analyzed.

1. Regular points of the stability boundary

Consider a point p = p0 on the stability boundary corresponding to the simple
zero eigenvalue λ = 0 . We denote M0 = M(p0) , C0 = C(p0) . Let p = p(ε) ,
ε ≥ 0 be an arbitrary smooth curve in the parameter space starting at the point
p(0) = p0 :

p(ε) = p0 + εe + ε2d + o(ε2) (3)
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where ε is a small parameter, e = dp/dε , d = 1
2d2p/dε2 (these derivatives are

evaluated at ε = 0 ). Then along this curve the eigenvalue λ and the correspond-
ing eigenvector can be represented as series of integer powers of ε . The perturbed
eigenvalue λ takes the form [3, 9]

λ =
[
uT dC

dε
u
]

ε + o(ε) =

[
uT

n∑
i=1

∂C
∂pi

dpi

dε
u

]
ε + o(ε) = (g, e)ε + o(ε),

g =
(
uT ∂C

∂p1
u, . . . ,uT ∂C

∂pn
u
)T

,

(4)

where u is an eigenvector corresponding to the zero eigenvalue ( C0u = 0 ) and
satisfying the normalization condition uTM0u = 1 ; g is a gradient vector of the
eigenvalue; (a,b) is the scalar product in the parameter space. If (g, e) = 0 ,
then we get [3]

λ =
[
1
2
uT d2C

dε2
u + vT dC

dε
u
]

ε2 + o(ε2)

=


1

2
uT


 n∑

i=1

∂C
∂pi

d2pi

dε2
+

n∑
i,j=1

∂2C
∂pi∂pj

dpi

dε

dpj

dε


u + vT

n∑
i=1

∂C
∂pi

dpi

dε
u


ε2

+ o(ε2) = [(g,d) + (Ge, e) + η] ε2 + o(ε2).

(5)

The matrix G and the scalar quantity η are given by

G =
[
1
2
uT ∂2C

∂pi∂pj
u
]

, i, j = 1, . . . , n,

η = (f , e), f =
(
vT ∂C

∂p1
u, . . . ,vT ∂C

∂pn
u
)T

,

(6)

where v is a vector satisfying the equation

C0v = −
n∑

i=1

∂C
∂pi

u ei. (7)

Note that u+εv is the first order approximation of the eigenvector corresponding
to the eigenvalue λ [3].

Equation (7) can be solved in several manners. One way is to find the vector v
as a linear combination of all eigenvectors of the matrix C0 . Then the expression
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for η takes the form [3]

η = −
m∑

i=2

(fi, e)2/λi = (Fe, e),

fi =
(
uT

i

∂C
∂p1

u, . . . ,uT
i

∂C
∂pn

u
)T

, F = −
m∑

i=2

fifT
i /λi,

(8)

where ui , i = 2, . . . , m are eigenvectors corresponding to the positive eigenvalues
0 < λ2 ≤ · · · ≤ λm . Derivatives are taken at p = p0 .

To use expression (8) we need to find all eigenvalues and eigenvectors of the
matrix C0 . But we can avoid these calculations by solving equation (7) with the
method described in [12, 11]. Then we get a solution to (7) in the form

v = −A−1
0

n∑
i=1

∂C
∂pi

u ei, A0 = C0 − uuT, (9)

where A0 is the nonsingular matrix. Substituting (9) into (6) we obtain

η = (Fe, e), F =
[
−uT ∂C

∂pi
A−1

0

∂C
∂pj

u
]

, i, j = 1, . . . , n. (10)

Using equation (10) in (5) and taking into account (g, e) = 0 we find the
stability boundary ( λ = 0 ) up to the second order terms

(g,∆p) + ((F + G)∆p,∆p) + o(‖∆p‖2) = 0, ∆p = p− p0. (11)

Thus, the stability boundary is a smooth surface in the vicinity of the point
p = p0 , the gradient g being the normal vector to the stability boundary directed
into the stability domain, see Fig. 1.

Figure 1. The normal vector g to the stability boundary lying in the stability domain.

The tangent plane to the stability boundary at p0 is determined by the equa-
tion (g,∆p) = 0 . Considering curves lying in the tangent plane ( (g, e) = 0 ,
(g,d) = 0 ) and using (5), (10) we get λ = ((F + G)e, e)ε2 + o(ε2) . Hence, the
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stability domain is convex at p = p0 ( λ < 0 on the tangent plane) if the matrix
F + G is negative definite, and concave if F + G is positive definite.

If the second order derivatives of the matrix C with respect to parameters are
all zeros then G = 0 , and according to (8) we have F ≤ 0 . Hence the stability
domain is convex, this result agreeing with Papkovich’s theorem on convexity of
the stability domain of a conservative system linearly dependent on parameters
[7, 5].

2. Singularities of the stability boundary

Multiple zero eigenvalues determine singularities of the stability boundary (points
where the boundary surface is not smooth). One of the basic concepts of singularity
and bifurcation theory, allowing constructive study of singularities, is the notion
of general position. According to it for a fixed dimension n of the parameter
space only some singularities of the type 0(r) , r > 1 are generic (typical). Other
(nongeneric) singularities though artificially created in specific examples, disappear
if we take an arbitrarily small perturbation of the family C + δC (caused for
example by numerical errors) [2]. Thus, when studying the stability boundary the
generic singularities are most interesting. Arnold [1] has shown that in the case
of general position the singularity 0(r) appears if the number of parameters n
is equal or greater than r(r + 1)/2 . In particular, this means that in the case of
two parameters there are no singularities and the stability boundary is a smooth
curve with the normal g directed into the stability domain.

The simplest singularity 0(2) can appear if we have r(r + 1)/2 = 3 (or more)
parameters. In this case r = 2 , i.e. there are two linearly independent eigenvectors
u1 , u2 , corresponding to the zero eigenvalue, which can be chosen satisfying the
normalization conditions

uT
i M0uj = δij , i, j = 1, 2, (12)

where δij is the Kronecker delta. It should be noted that normalization conditions
can be taken in different ways. They do not influence the final result since the
stability doesn’t depend on M .

Let p = p(ε) , ε ≥ 0 be an arbitrary smooth curve in the parameter space
starting at the point p(0) = p0 with a direction e = dp/dε (the derivative is
taken at ε = 0 ). Then a semi-simple double zero eigenvalue splits into two simple
eigenvalues λ = εµ + o(ε) , where two different values of µ are found from the
quadratic equation [10]

det[(rij , e)− µδij ] = 0, i, j = 1, 2.

The real vectors rij ∈ Rn , i, j = 1, 2 are determined by the expression

rij =
(
uT

i

∂C
∂p1

uj , . . . ,uT
i

∂C
∂pn

uj

)T

. (13)
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Due to the symmetry of the matrix C we have r12 = r21 . For stability we
need both roots µ to be nonnegative. This means that the 2×2 matrix [(rij , e)]
should be positive semi-definite. Using Sylvester’s conditions we obtain

(r11 + r22, e) ≥ 0, (r11, e)(r22, e)− (r12, e)2 ≥ 0. (14)

In the case of three parameters ( n = 3 ) these inequalities determine a cone in
the vicinity of the point p0 in the parameter space. In fact, after introduction of
new variables

x = (r2, e), y = (r12, e), z = (r1, e), (15)

where
r1 =

r11 + r22

2
, r2 =

r22 − r11

2
, (16)

the approximation to the stability domain (14) takes the form of the cone x2+y2 ≤
z2 , z ≥ 0 , see Fig. 2a.

Figure 2. Singularity 0(2) of the stability domain boundary (the cone): a) in the parameter
space (x, y, z) ; b) in the parameter space p (upper part of the cone for γ > 0 and lower part
for γ < 0 ).

The conical surface x2+y2 = z2 , z ≥ 0 , approximating the stability boundary,
can be parameterized as follows x = z cos α , y = z sin α , z ≥ 0 . Using (15) we
get the equations

(r2 − r1 cos α, e) = 0, (r12 − r1 sin α, e) = 0, (r1, e) ≥ 0. (17)

Then the vector e can be represented in the form

e = t(r2 − r1 cos α)× (r12 − r1 sin α) =

= t(r2 × r12 − r2 × r1 sinα− r1 × r12 cos α),

where t and α are real parameters. From the third expression of (17) we obtain
the inequality t(r1, r2 × r12) ≥ 0 , which means that t ≥ 0 or t ≤ 0 depending
on the sign of (r1, r2 × r12) .

Thus, the cone (14) can be written in the parameterized form

K = { e : e = t[a + d(b sin α + c cos α)], γt > 0, d ∈ [0, 1], α ∈ [0, 2π] }, (18)
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Figure 3. Simple model of a column loaded by an axial force.

where the vectors a , b , c and the constant γ are defined as follows

a = r2 × r12, b = r1 × r2, c = r12 × r1, γ = (r1, r2 × r12). (19)

The vector e runs through the cone surface, when d = 1 and t , α are
changed. The cone surface approximating the stability boundary near p = p0

is shown in Fig. 2b, where depending on the sign of γ its upper of lower part
is taken (stability domain is inside the corresponding cone part). Note that the
normalization conditions (12) that are used in the calculations are not important
since the stability does not depend on the mass matrix M . Taking eigenvectors
u1 , u2 not satisfying (12) we get other vectors r11 , r12 , r22 (and also a , b ,
c ), but the cone determined by expressions (14) or (18) remains unchanged.

3. Buckling problem of a column loaded by an axial force

Let us consider a finite dimensional model of a column, consisted of four equal
links of the length l , and loaded by an axial force P , see Fig. 3. A bending
moment in the i -th node is proportional to a2

i θi , where ai is the cross-section
area of the column at the i -th node, θi is the angle between links in the i -th
node. Taking into account boundary conditions y0 = y4 = 0 the system has
three degrees of freedom determined by components of the vector of generalized
coordinates y = (y1, y2, y3)T , where yi is a deflection of the i -th node. The
stiffness matrix C of the system in nondimensional coordinates takes the form [4]

C =




a2
0 + 4a2

1 + a2
2 − 2P −2a2

1 − 2a2
2 + P a2

2

−2a2
1 − 2a2

2 + P a2
1 + 4a2

2 + a2
3 − 2P −2a2

2 − 2a2
3 + P

a2
2 −2a2

2 − 2a2
3 + P a2

2 + 4a2
3 + a2

4 − 2P


 . (20)

We assume that the cross-section areas at the ends of the column are equal
to a0 = a4 =

√
3 and the total volume is fixed a1 + a2 + a3 = 7/2 . Then

the stiffness matrix C depends on three parameters p = (a1, a3,P)T , and the
following natural conditions a1 > 0 , a3 > 0 and a2 = 7/2 − a1 − a3 > 0 are
implied.

Let us consider stability of the system in the vicinity of the point p0 =
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(1, 1, 7/2) . At this point the matrix C takes the form

C0 =




9/4 −3 9/4
−3 4 −3
9/4 −3 9/4


 .

The matrix C0 possesses the double zero eigenvalue λ = 0 and the simple
eigenvalue λ = 17/2 . Thus, at p = p0 we have the singularity 0(2) (the cone).
The vectors r11 , r12 , r22 , a , b , c , and the constant γ can be calculated using
formulae (13), (16), (19)

r11 = (−2.5,−2.5,−2.5)T, r12 = (4,−4, 0)T, r22 = (32, 32,−16)T,

a = (−27,−27,−138)T, b = (60,−60, 0)T, c = (37, 37, 118)T,

γ = 480 > 0.

Then the cone (18), which is the first order approximation of the stability domain
at the singular point p0 , can be written as

K = { e : e = (−27t + 60td sin α + 37td cos α,−27t− 60td sin α+

+37td cos α,−138t + 118td cos α)T, t > 0, d ∈ [0, 1], α ∈ [0, 2π] }. (21)

The third component eP = −138t + 118td cos α of the vector e = (e1, e3, eP)T

is negative for all t > 0 , d ∈ [0, 1] . Hence an increment of the load ∆P =
εeP + o(ε) inside the stability domain is negative for all small perturbations of
the parameters ∆a1 = εe1 , ∆a3 = εe3 , and the critical load Pcr attains its
maximum at the point a1 = a3 = 1 . The optimal design of the column a1 =
a3 = 1 is called bimodal since there are two eigenvectors (modes) corresponding
to Pcr [10]. The stability domain boundary calculated numerically is shown in
Fig. 4. Numerical analysis confirms existence of the singularity 0(2) (the cone).
The numerical results are in a good agreement with the first order approximation
(21) to the stability domain at p = p0 .

4. General case

In this section we study singularities 0(r) determined by λ = 0 with an arbitrary
multiplicity r > 1 . Recall that in the generic case such singularities appear if we
have r(r + 1)/2 or more parameters. Let u1, . . . ,ur be the linear independent
eigenvectors corresponding to the zero eigenvalue and satisfying the normalization
conditions uT

i M0uj = δij for i, j = 1, . . . , r . We define the vectors rij , i, j =
1, . . . , r by formula (13). Due to the symmetry of C we have rij = rji , i, j =
1, . . . , r . As above, along the curve p = p(ε) , p(0) = p0 with the direction
e = dp/dε a perturbation of the semi-simple eigenvalue λ = 0 has the form
λ = εµ+o(ε) . The r different values of µ are the eigenvalues of the symmetrical
r × r matrix R = [(rij , e)] , i, j = 1, . . . , r . Stable perturbations are determined
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Figure 4. Stability boundary for the column in the parameter space p .

by the condition µ ≥ 0 for all eigenvalues of R or, equivalently, by positive semi-
definite matrices R ≥ 0 . The condition R > 0 defines direction vectors e in the
parameter space penetrating into the stability domain. The vectors e such that
the matrix R is singular and positive semi-definite are tangent to the stability
boundary.

As a result, for an arbitrary singularity 0(r) we obtain the set

K = { e : R = [(rij , e)] ≥ 0, i, j = 1, . . . , r }, (22)

which is the tangent cone to the stability domain at the singular point (a linear
approximation). The condition of positive semi-definiteness of the matrix R can
be written in the form of inequalities called Sylvester’s conditions [6].

5. Conclusion

In this paper we study boundaries of the stability domains of conservative systems
in the parameter space. For generic (typical) cases we classify singularities of the
stability boundary depending on multiplicity of the zero eigenvalue, responsible for
the loss of stability. It is shown that in the generic case the stability boundary is a
smooth curve in two-dimensional parameter space; in the case of three parameters
the stability boundary is a smooth surface the only singularity of which is a cone.
A full description of the cone being a first order approximation to the stability
boundary is given. It is shown that calculation of the cone needs only information
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at the singular point: first order derivatives of the matrix C with respect to
parameters and eigenvectors corresponding to the zero eigenvalue. For regular
points the second order approximation to the stability boundary is obtained. We
emphasize that for its calculation only first and second order derivatives of the
matrix C with respect to parameters and the eigenvector are needed. In a general
case of the singularity with r -multiple zero eigenvalue we obtain the tangent cone
(the first order approximation) to the stability domain at the singular point as a
set of vectors e satisfying conditions for semi-positive-definiteness of the matrix
[(rij , e)] , i, j = 1, . . . , r . Approximations to the stability domain at regular and
singular points obtained in this paper have simple and constructive form. They
can be used with other mechanical problems.

The method proposed in the paper is general and allows to study not only
singularities of stability domains connected with zero eigenvalues, but also to an-
alyze multiple eigenfrequencies and singularities arising on frequency surfaces for
conservative systems depending on parameters.

The example given in section 3 shows close connection of singularities of sta-
bility boundaries with the bimodal solutions in optimization problems for elastic
systems [10]. In particular, it turns out that multimodal optimal solutions are
generic (typical). One can say that singular (multimodal) points “attract” opti-
mal solutions, as happens in the case of the singularity “cone” studied in sections
2, 3.
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