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1 Supplementary methods

1.1 Model

Wave propagation with frequency ω in a 2D waveguide is described by the complex scat-
tering state ϕ(x, y, t) = φ(x, y)e−iωt satisfying the Helmholtz equation

∆φ(x, y) + ε(x, y)
ω2

c2
φ(x, y) = 0 , (1)

with the speed of light c and the complex dielectric function ε which is modelled by
1 + iη/k in the waveguide’s interior. Here, k = ω/c denotes the wavenumber. The
imaginary part of ε with the dissipation coefficient η describes the losses originating from
the interaction with the top and bottom waveguide walls or an absorbing material in the
waveguide itself [33]. Note that the 2D model we introduce here is readily applicable
to the 3D waveguide employed in the experimental setup if the system resides in the
lowest quantized mode between the top and bottom metal plates. As a consequence, the
z-axis pointing out of the xy-plane can be neglected, justifying the 2D description (see
Supplementary Fig. 1). Furthermore, we emphasize that the applicability of Eq. (1) is
not limited to the electromagnetic domain, but may also describe the propagation of, e.g.,
sound or matter waves.

1.2 Floquet-Bloch picture

In the following we will consider a metallic waveguide, which implies Dirichlet boundary
conditions at the waveguide boundary. Considering periodic functions both at the lower
and the upper waveguide boundary, at y = ξ↓(x) and y = ξ↑(x), respectively, these
conditions thus become

φ
(
x, ξi(x)

)
= 0 , i =↓, ↑ ,

ξ↓(x) = σ sin kbx and ξ↑(x) = W + σ sin(kbx+ ϑ) , (2)
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Supplementary Figure 1 | Waveguide geometry. A periodic waveguide with width
W , boundary wavenumber kb and undulation amplitude σ. A single unit cell of length
� = 2π/kb is highlighted by solid lines.

where kb and σ denote the boundary wavenumber and amplitude, respectively; W is the
waveguide width and the constant parameter ϑ ∈ (−π, π] corresponds to the phase shift
between the upper and lower boundary. For example, ϑ = 0 corresponds to a periodic
waveguide with constant width W (see Supplementary Fig. 1 for an illustration).

In a uniform waveguide, σ = 0, with no losses, η = 0, the propagating waves are given
by the modes

φn(x, y) = sin
(nπ
W

y
)
eiknx, kn =

√
k2 −

(nπ
W

)2

, n = 1, 2, . . . (3)

We assume that there are only two propagating modes with n = 1 and 2, which determine
the wavenumber interval as 2 < kW/π < 3. In a periodic waveguide, when σ > 0, the
propagating modes are described by the Bloch solutions

φ(x, y) = Λ(x, y) eiKx, (4)

where Λ(x, y) is an x-periodic function with period � = 2π/kb, i.e., Λ(x+ �, y) = Λ(x, y).
The Bloch wavenumber K is defined up to an integer multiple of the boundary wavenum-
ber kb, i.e., K (mod kb). In this work, we study effects related to a degenerate (EP) Bloch
wavenumber K, and our first goal is to find values of the parameters corresponding to the
EP degeneracy.

1.3 Perturbative approach

To accomplish this task we consider the boundary wavenumber equal to

kb = kr + δ , (5)

where the resonant wavenumber kr, at which modes 1 and 2 strongly scatter into each
other, is given by

kr = k1 − k2 , (6)

and δ is the detuning parameter. When σ = η = δ = 0, we have kb = kr and a
superposition of the two corresponding modes (3) propagating in the positive x-direction
can be written as

φ0(x, y) = Λ(0)(x, y)eik1x (7)

3



W W W. N A T U R E . C O M / N A T U R E  |  3

SUPPLEMENTARY INFORMATION RESEARCH

with

Λ(0)(x, y) = a1 sin
( π

W
y
)
+ a2 sin

(
2π

W
y

)
e−ikrx (8)

and arbitrary coefficients a1 and a2. Here, the function Λ(0)(x, y) is x-periodic with period
�0 = 2π/kr. Expression (7) can be interpreted as a degenerate Bloch mode of multiplicity
two with the wavenumber k1 = k2 (mod kr). This is a diabolical point (DP) degeneracy
(typical for Hermitian systems) at which only the Bloch wavenumbers merge, while the
mode functions remain different, see, e.g., Ref. [1].

In this section, we find the first-order approximation for Bloch modes when the bound-
ary amplitude σ, the detuning parameter δ and the dissipation coefficient η are small
quantities of the same order. These Bloch modes are small perturbations of (7) and, thus,
can be written in the form (4) with

Λ(x, y) = Λ(0)(x, y) + Λ(1)(x, y), K = k1 + s, (9)

where Λ(1)(x, y) and s are small corrections of the same order as σ, δ and η, see, e.g., Ref.
[34]. Using Eq. (9) in (4), we obtain the Bloch mode in the form

φ(x, y) = [Λ(0)(x, y) + Λ(1)(x, y) + isxΛ(0)(x, y)]eik1x, (10)

where the second-order small terms in σ, δ and η and in any of their products were
neglected. Substituting (10) into (1) and neglecting again all second-order terms, we get
the equation

Λ(1)
xx + 2ik1Λ

(1)
x + Λ(1)

yy +
( π

W

)2

Λ(1) + 2is(Λ(0)
x + ik1Λ

(0)) + ikηΛ(0) = 0 , (11)

with fn ≡ ∂
∂n
f and fnn ≡ ∂2

∂n2f . Note that zero-order terms are canceled in (11) because
Λ(0) is a solution of the unperturbed problem.

In the first-order approximation, we can transfer the boundary conditions (2) to y = 0
and y = W by expanding φ in Taylor series as

0 = φ+ φyσ sin krx+O(σ2) at y = 0 ,

0 = φ+ φyσ sin(krx+ ϑ) +O(σ2) at y = W . (12)

Using Eq. (10) in (12), and taking into account that Λ(0) = 0 at y = 0 and W , we obtain

Λ(1) = −σΛ(0)
y sin krx at y = 0,

Λ(1) = −σΛ(0)
y sin(krx+ ϑ) at y = W , (13)

where second-order terms were neglected. The function Λ(x, y) must be x-periodic with
period

� =
2π

kb
= �0 + �1δ +O(δ2), �0 =

2π

kr
, �1 = −2π

k2
r

. (14)

Using Eq. (9), the first-order periodicity condition for Λ(x, y) yields

(
Λ(1)

)
x=0

=
(
Λ(0)

x �1δ + Λ(1)
)
x=�0

, (15)
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where we used Λ(0)(x = 0, y) = Λ(0)(x = �0, y). Similarly, the periodicity condition for
the derivative Λx yields

(
Λ(1)

x

)
x=0

=
(
Λ(0)

xx �1δ + Λ(1)
x

)
x=�0

. (16)

The linearized equation (11) can now be solved for s and Λ0. For this purpose, we
multiply it with sin

(
π
W
y
)
and integrate with respect to x and y,

∫ W

0

∫ �0

0

[
Λ(1)

xx + 2ik1Λ
(1)
x + Λ(1)

yy +
( π

W

)2

Λ(1)

+ 2is(Λ(0)
x + ik1Λ

(0)) + ikηΛ(0)
]
sin

( π

W
y
)
dxdy = 0 .

(17)

The first three terms should be integrated using (13), (15) and (16) to get rid of the
derivatives of the unknown function Λ(1). The resulting terms containing Λ(1) cancel out,
yielding the equation

0 =

∫ W

0

∫ �0

0

[
2is

(
Λ(0)

x + ik1Λ
(0)
)
+ iηkbΛ

(0)
]
sin

( π

W
y
)
dxdy

− �1δ

∫ W

0

[
Λ(0)

xx (�0, y) + 2ik1Λ
(0)
x (�0, y)

]
sin

( π

W
y
)
dy

− σ
π

W

∫ �0

0

[
Λ(0)

y (x,W ) sin (krx+ ϑ) + Λ(0)
y (x, 0) sin (krx)

]
sin

( π

W
y
)
dx .

(18)

Then, using the explicit form of Λ(0) from (8) and of �0 and �1 from (14) yields, dropping
a common factor of kr/ (2πWk1),

(
iη

2

k

k1
− s

)
a1 + i

σ

k1
(eiϑ + 1)

π2

W 3
a2 = 0 . (19)

A similar integration using the factor sin
(
2π
W
y
)
eikrx instead of sin

(
π
W
y
)
in Eq. (17), yields

− i
σ

k2
(e−iϑ + 1)

π2

W 3
a1 +

(
δ + i

η

2

k

k2
− s

)
a2 = 0 . (20)

A nontrivial solution (a1, a2) of system (19) and (20) exists if and only if the determi-
nant vanishes, i.e.,

(
s− i

η

2

k

k1

)(
s− δ − i

η

2

k

k2

)
− 2π4

W 6

σ2

k1k2
(1 + cosϑ) = 0 . (21)

The roots s of this equation and the corresponding solution (a1, a2) determine the correc-
tions to the Bloch modes in Eqs. (4), (8) and (9). Note that, in the absence of dissipation,
η = 0, our analysis fully reproduces the results obtained in Ref. [35].
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1.4 Effective 2× 2 model

In the next step, we derive the effective two-level Schrödinger equation corresponding to
the propagation of the two nearly resonant Bloch modes. For this purpose, we write the
solution (4) given by (8) and (9) as

φ(x, y) ≈
(
a1φ1(x, y) + a2φ2(x, y)

)
eisx , (22)

where the coefficients

c1(x) = a1
√
k1e

i(π−ϑ)/4e−i(δ−s)x ,

c2(x) = a2
√
k2e

−i(π−ϑ)/4e−i(δ−s)x , (23)

satisfy the Schrödinger equation

i
∂

∂x

(
c1
c2

)
= H

(
c1
c2

)
, H =

(
δ − iη

2
k
k1

Bσ

Bσ −iη
2

k
k2

)
, (24)

with

B =
√

2 (1 + cosϑ)
π2

W 3

1√
k1k2

. (25)

The eigenvalue E of the Hamiltonian (24) is related to the Bloch wavenumber K via
Eq. (23) and Eqs. (5), (6) and (9) as

E = δ − s = δ + k1 −K = kb + k2 −K . (26)

So far, we have considered a uniform dissipation with a constant parameter η. To
engineer the waveguide’s mode-dependent transmission such that one mode suffers large
loss, while the other mode propagates (approximately) undamped, we now extend the
model to allow absorption that is distributed non-uniformly along the waveguide.

Manipulating loss in a waveguide design implies, however, that the loss parameter is
position-dependent, η = η(x, y). In order to keep the Floquet-Bloch formalism valid, we
consider periodic losses with the period of the boundary modulation 	 = 2π/kb, i.e.,

η = η0η̃(x, y), η̃(x+ 	, y) = η̃(x, y) , (27)

where η̃(x, y) is a given function describing the loss distribution and the real parameter η0
controls the loss intensity. Performing the derivation as for uniform absorption, integrals
of the form

Γnm =
ei(π−ϑ)(m−n)/2

πW

kkb√
knkm

∫ �

0

∫ W

0

η̃(x, y) sin
(nπ
W

y
)
sin

(mπ

W
y
)
e−i(kn−km)xdxdy (28)

now appear, leading to the Hamiltonian

H =

(
δ Bσ
Bσ 0

)
− i

η0
2

(
Γ11 Γ12

Γ∗
12 Γ22

)
. (29)

Note that we have changed the integration limit from 	0 to 	 and kr to kb in Eq. (28),
which is justified within a first order perturbation approach, taking into account the exact
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period of the boundary modulation. In case of constant losses, i.e., η̃(x, y) = 1, we obtain
Γn �=m = 0 and Γnn = k

kn
, returning to Eq. (24).

A very efficient way to engineer the mode-specific absorption is to choose its spatial
distribution according to the Hermitian dyadic product v2v

†
2. Here, v2 is one of the two

eigenvectors of the system in the absence of absorption, with eigenvalue E2, i.e.,

H0v2 = E2v2 , H0 =

(
δ Bσ
Bσ 0

)
. (30)

Introducing the composite Hamiltonian,

H = H0 − i
η

2
v2v

†
2 , (31)

with the anti-Hermitian dissipative term −iη
2
v2v

†
2, one can see that the first eigenstate v1

does not dissipate at all due to the orthogonality condition v†2v1 = 0, in contrast to the
second eigenstate v2 leading to a decay rate ∝ exp

(
−η

2
x
)
. In fact, this procedure is the

optimal way in which a dissipation asymmetry for a 2-mode system can be introduced.
While the dyadic form of Γnm for the losses in the effective 2 × 2 description is very

efficient, we also tested the results for the case when placing the absorbing material just
close to the nodes of the second mode, and found this approach to work very well (espe-
cially in view of practical demands of the experiment). Eventually we also implemented
this latter protocol in the experimental microwave setup (see Fig. 3a,b in the main text
and section 1.8 below).

1.5 EP structure

The Hamiltonian in Eq. (1) presented in the main text is obtained from Eq. (24) by
identifying g = Bσ and γn = ηk/kn, n = 1, 2. It possesses the eigenvalue spectrum

E1,2 =
δ

2
− i

γ1 + γ2
4

± 1

2

√
∆ , ∆ ≡

(
δ − i

γ1 − γ2
2

)2

+ 4g2 . (32)

The degenerate state E1 = E2 appears when both the real and imaginary part of ∆ vanish
simultaneously, yielding

gEP = ±|γ1 − γ2|
4

, δEP = 0 . (33)

When η > 0, we have γ1 �= γ2 and there is a single eigenvector vEP ∝ (1,±i)T of the
Hamiltonian (24), meaning that Eq. (33) defines an EP degeneracy where both eigenvalues
and eigenvectors of the Hamiltonian coincide. Therefore, in the first approximation, the
EP degeneracy appears for the waveguide with periodic boundary of amplitude σ = gEP/B
and resonant wavenumber kb = kr.

1.6 Dynamically encircling an EP in a waveguide

Using the model system (24), we now investigate the transmission through a waveg-
uide for which the boundary modulation and the loss parameter change slowly along the

7
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Supplementary Figure 2 | Parameter-space trajectory. a, The path in Eq. (34) is
shown here in parameter space (δ, σ) as a black solid line. The EP is indicated by a white
point. Black dots denote the start and end points of the parameter trajectory, correspond-
ing to identical waveguides of uniform width. The respective lines where ReE1 = ReE2

and ImE1 = ImE2 are shown by dashed and dotted lines, respectively. The following
set of values has been used to determine the waveguide parameters through Eq. (34):
L/W = 100, kW/π = 2.05, σ0/W = 0.1, δ0W = 0.85, ρW = 0.3, η0W = 0.6. b, Here
we show the same path as in a, but in a different parameter space (p1, p2), in which each
point corresponds to a unique waveguide realization and in which the states at the start
and end points coincide at a single point, p1 = 0 and p2 = −1. With these new pa-
rameters it becomes immediately apparent that our parameter-space trajectory, indeed,
forms a closed loop around the EP. Colors indicate how also other loops or areas trans-
form into each other. Note that the dashed line would extend to the black dot along
the line p1 = 0 (σ = 0 in panel a) when the above equality [ReE1 = ReE2] is extended
to its Floquet-Bloch form [ReE1 = ReE2 (mod kb)], see section 1.7 for a corresponding
discussion.

propagation-axis x (for an illustration we refer to Fig. 2e in the main text). Specifically,
we choose the following parametrization for the parameter evolution,

σ(x) =
σ0

2

(
1− cos

2π

L
x

)
,

δ(x) = δ0

(
2
x

L
− 1

)
+ ρ ,

η(x) =
η0
4

(
1− cos

2π

L
x

)2

, (34)

where 0 ≤ x ≤ L, with the finite waveguide length L � �. Note that it is well justified to
move from an infinitely extended system to a finite one if the parameter variations over a
distance � � L are small. The constants σ0 and δ0 determine the maximum roughness and
detuning strengths of the boundary ξ(x), respectively, η0 denotes the dissipation strength
and ρ corresponds to a constant detuning offset. Values of these parameters used in the
simulations are given in the captions of Supplementary Figs. 3 and 5.

We emphasize that the systems realized at positions x = 0 and x = L are identical,
since both correspond to a uniform waveguide without absorption. A waveguide with

8
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parameters (34) therefore emulates a closed loop in parameter space and we will show
that this loop encircles an EP. To facilitate this, let us consider the plane (δ, σ), in which
the parameter trajectory (34) is presented in Supplementary Fig. 2a by a solid black curve
and its and its start and end points by black dots. For arbitrary δ and σ, we choose the
Hamiltonian (24) with the damping parameter

η =
η0
4

[
1 + cos

(
π
(δ − ρ)

δ0

)]2

, (35)

providing an extension from the loop (34) to the whole (δ, σ)-plane. Using Eq. (33) with
g = Bσ and γi = ηk/ki, one finds that there is a single EP corresponding to

δEP = 0 , σEP =
|γ1 − γ2|

4B
=

η0
16B

[
1 + cos

(
π
ρ

δ0

)]2 ∣∣∣∣
k

k1
− k

k2

∣∣∣∣ , (36)

shown by a white dot in Supplementary Fig. 2a. There are two lines at which either the
real or the imaginary part of the energies E1,2 coincide, starting at the EP in opposite
directions: the one line corresponding to equal energies ReE1 = ReE2 is shown by a
dashed curve, while the other line, given by equal widths, i.e., ImE1 = ImE2, is indicated
by a dotted curve.

To assure ourselves that the loop (34) indeed encircles the EP (the white dot) we
note that the two parameters (σ, δ) determine a specific waveguide geometry through the
boundary function ξ(x) = σ sin (kr + δ)x. For vanishing amplitude, σ = 0, we have a
rectangular waveguide, ξ(x) = 0, such that all waveguide configurations with an arbitrary
detuning δ are identical. When adding the losses according to the coefficient η in Eq. (34),
the configurations at x and L−x still correspond to exactly the same physical system, since
η(x) = η(L − x). Hence, the two black points in Supplementary Fig. 2a (the initial and
final states of the parameter trajectory) characterize the same waveguide configuration
and the black line connecting them corresponds to a closed loop around the EP.

To see this in a more straightforward way, we remove the ambiguity involved in this
parametrization by transforming (σ, δ) to a new set of parameters (p1, p2),

p1(σ, δ) = r(σ, δ) sin 2α(σ, δ) , (37)

p2(σ, δ) = r(σ, δ) cos 2α(σ, δ) , (38)

with

r(σ, δ) =

√(
σ

σ0

)2

+

(
δ − ρ

δ0

)2

, (39)

α(σ, δ) = arctan

(
δ − ρ

δ0
/
σ

σ0

)
. (40)

These parameters (p1, p2) have the advantageous property that they determine a waveg-
uide system uniquely in the sense that no other parameter pair (p1, p2) corresponds to
the same waveguide realization. For this alternative parameter set it now becomes imme-
diately apparent also visually (see Supplementary Fig. 2b), that our parametrization in

9
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Eq. (34) describes a closed loop around the EP. We want to emphasize that, mathemati-
cally, one may in principle map an arbitrary open path to a closed one by an appropriate
transformation. Such a mapping is, however, only meaningful if systems which are phys-
ically identical are mapped onto the same point in parameter space.

Furthermore, we note that in terms of the Bloch-Floquet picture employed in this
work, (σ, δ) are a natural choice of physical parameters, such that we will continue to
work with them in the following, while keeping in mind that our protocol indeed involves
the full encircling of an EP.

1.7 Asymmetric mode-switch in a waveguide with absorption

A central theme of our work is that one must distinguish between a parametric and a
dynamical encircling of an EP. In the former case, we follow the change of eigenstates
continuously along the loop, while in the latter case the parameters change slowly in time
(here, in longitudinal direction x), and we follow the true solution of the time-dependent
Schrödinger equation (24).

The instantaneous eigenvalues Ei(x) and the (right) eigenvectors Φi(x) satisfy

H(x)Φi(x) = Ei(x)Φi(x) , i = 1, 2 , (41)

and we impose the normalization condition |Φi(x)|2 = Φ†
i (x)Φi(x) = 1. Here, the time

(or position) x plays the role of a parameter. The fact that the EP is encircled paramet-
rically by the loop leads to a state-flip if the eigenvectors Φi(x) are defined continuously
dependent on x:

mode 1 = Φ1(0) = Φ2(L) ,

mode 2 = Φ2(0) = Φ1(L) . (42)

Within the above framework, a parametric encircling around the EP (traversing the loop in
Supplementary Fig. 2 from left to right) turns one instantaneous eigenvector continuously
into the other, i.e.,

�: mode 1 = Φ1(0) → Φ1(L) = mode 2 , (43)

�: mode 2 = Φ2(0) → Φ2(L) = mode 1 . (44)

The same happens when traversing the loop in the opposite direction (from right to left):

�: mode 1 = Φ2(L) → Φ2(0) = mode 2 , (45)

�: mode 2 = Φ1(L) → Φ1(0) = mode 1 , (46)

realizing a symmetric switch of the initial states Φ1,2(0) and final states Φ1,2(L). Here, an
additional Berry phase factor appears which we ignore since it is of no relevance for the
present work.

The corresponding parameter-dependent eigenvalues Ei(x) are shown in Supplemen-
tary Fig. 3. Note that at the endpoints x = 0 and x = L, the eigenvalues Ei are
brought together again, i.e., E1(0) = E2(L) and E1(L) = E2(0), if we recall from
Eq. (4) that K, and thus the eigenvalue E, is only determined mod kb. Here we take

10
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into account that kb has an x-dependence as well, kb(x) = kr + δ(x), see Eq. (5). Di-
rectly at the loop endpoints, both the roughness σ(x) and dissipation η(x) vanish, with
the eigenvalues Ei(x) then being given by δ(x) and 0. Thus, E2(0) − E1(L) = 0 and
E2(L) − E1(0) = δ(L) − δ(0) = kb(L) − kb(0), i.e., the respective eigenvalues coincide at
x = 0 and x = L due to the underlying Floquet-Bloch picture (see the dashed lines and
the arrow in Supplementary Fig. 3).

The above symmetric switching between states Φ1,2 is, however, not what happens
when encircling an EP dynamically. Upon a numeric integration of Eq. (24) following the
path defined in Eq. (34), we expand the solution vector in the instantaneous eigenbasis
Eq. (41) as

ψ(x) ≡
(
c1(x)
c2(x)

)
= b1(x)Φ1(x) + b2(x)Φ2(x) . (47)

Despite the flip of the instantaneous eigenvectors, the solution ψ(x) initialized in one of the
eigenmodes Φi generally follows the adiabatic prediction badi (x) ∼ exp

(
−i

∫ x

0
Ei(x

′)dx′)
only for one specific encircling direction if transported truly dynamically around the EP.
The condition for this to happen (given in Ref. [18]) requires the non-adiabatic contri-
bution to be small, and it is satisfied if the loop remains most of the time on the energy
sheet of the longest lived state (see, also, Fig. 1a,b in the main text). For the other
eigenmode, strong non-adiabatic effects appear, such that the state does not follow the
instantaneous eigenvector but rather returns to itself, apart from some prefactor (see,
e.g., Ref. [14]). If the encircling direction is reversed, the inverse behaviour is found: the
eigenstate that evolved adiabatically before now undergoes non-adiabatic transitions due
to the system’s non-Hermiticity, while the other eigenmode follows the adiabatic predic-
tion (see the right column of Supplementary Fig. 4). This means that, depending on the
input direction, a specific dominating mode is obtained, realizing an asymmetric switch
between the eigenmodes.

Results. In Supplementary Fig. 4 we show the real eigenvalues Ei(x) weighted by the
respective eigenvector populations |bi(x)|2,

P (x) ≡ ReE1(x)|b1(x)|2 + ReE2(x)|b2(x)|2

|b1(x)|2 + |b2(x)|2
, (48)

for different initial conditions and encircling directions. When describing a loop around
the EP in a counter-clockwise direction (which we identify with injection in the waveguide
from the left), states initialized in either the first mode (red dashed line in Supplementary
Fig. 4a) or in the second mode (blue dashed line Supplementary Fig. 4a) result in a
population |b2(L)|2 that is much larger than the corresponding population |b1(L)|2, such
that P (x) from Eq. (48) follows closely the upper (ReE2) eigensheet. This corresponds
to the first mode being dominant at the end of the waveguide at x = L for both initial
conditions:

�: mode 1 = b1(0)Φ1(0) → b2(L)Φ2(L) = mode 1 ,

�: mode 2 = b2(0)Φ2(0) → b2(L)Φ2(L) = mode 1 (49)

Upon reversing the encircling direction (trajectories now start at x = L = 100 and
propagate leftwards to the final position x = 0, see Supplementary Fig. 4b), both initial
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Supplementary Figure 3 | Parameter-dependent eigenvalue spectrum for bulk
absorption. a, Real part of the parameter-dependent eigenvalue spectrum E1,2(x)
Eq. (32), parametrized according to Eq. (34) (shown by solid lines). The coloring is
such that red (blue) corresponds to the eigenvalue of the first (second) eigenstate at the
beginning of the evolution at x = 0. b, Imaginary part of the spectrum. Here we employ
a loss potential which is uniform in y-, and slowly varying in x-direction. Dashed lines
indicate that the spectrum at the loop endpoints x = 0 and x = L differs only by integer
multiples of kb(0) and kb(L) in the employed Floquet-Bloch picture (we refer to the text
for more details). The corresponding model parameters can be found in the caption of
Supplementary Fig. 2.

states yield a much higher population for |b2(0)|2,

�: mode 1 = b2(L)Φ2(L) → b2(0)Φ2(0) = mode 2 ,

�: mode 2 = b1(L)Φ1(L) → b2(0)Φ2(0) = mode 2 . (50)

Thus, the system ends in a different final state Φ2 as compared to Eqs. (49).
Furthermore, we want to emphasize that with a dissipation like in Eq. (35), both eigen-

states experience equal dissipation at the start and end of the parameter trajectory, i.e.,
with ImE1 = ImE2 (see Supplementary Figs. 3b and 12a). In this way a loop is realized
that avoids multiple non-adiabatic flips during the evolution. See, e.g., Refs. [15,16,21]
for a study on the consequences of different starting points in parameter space on the
dynamics.

With this example we have already demonstrated the basic principle of the asymmetric
switching device: suppose that a superposition of two modes is injected from the left and
from the right. Due to the EP encircling induced by the spatial variation of the boundary
amplitude and frequency (in the presence of loss), the initial state will result in different
dominating pure modes at the end of the loop, depending only on the encircling direction.
In the waveguide setup, this leads to a mode-selection depending on the direction from
which the state is injected. With the boundary parametrization Eq. (34), our concept can
be readily applied to the actual waveguide system (see Figs. 2 and 3 in the main text, as
well as Supplementary Fig. 11).
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Supplementary Figure 4 | Dynamically encircling an EP in a waveguide with
bulk absorption. Counter-clockwise loops correspond to injection from the left (starting
at x = 0, left column), clockwise loops correspond to injection from the right (starting
at x = L, right column), see also the insets at the top. a, Position-dependent eigenvalue
spectrum E1,2(x) (shown by black lines, corresponding to the data shown in Supplemen-
tary Fig. 3), as well as P (x), the real eigenvalue spectrum weighted by the respective
eigenvector populations |bi(x)|2, shown in dashed colored lines. The coloring of P (x) cor-
responds to the initial condition: Red (blue) corresponds to the state being injected in
the first (second) eigenmode, for injection from the right the coloring is reversed since the
instantaneous eigenmodes are flipped. The x position at which non-adiabatic transitions
occur is located approximately at x = L/2, where P (x) departs from the eigenvalue sur-
face it initially follows [21]. b, The norm |b1(x)|2+ |b2(x)|2, showing the magnitude of the
overall decay for trajectories of the same color as in panel a. The corresponding model
parameters can be found in the caption of Supplementary Fig. 2.

1.8 Asymmetric mode-switch in a waveguide with position de-
pendent absorption

It is evident from Supplementary Fig. 4b, where we plot the norm of the propagating state
ψ, that the device quality is strongly limited by the large absorption both propagating
modes suffer from, leading to a decay by many orders of magnitude. For uniform absorp-
tion, this behavior is impossible to overcome: To induce a non-adiabatic transition during
an EP encircling, the system size L and/or the absorption strength η have to be large. A
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Supplementary Figure 5 | Parameter-dependent eigenvalue spectrum for posi-
tion dependent absorption. Here we show the same as in Supplementary Fig. 3, with
the difference that we are now employing position dependent absorption in the waveguide
setup. Note that the respective imaginary part of the eigenvalue, Im En, is almost zero for
one mode, while it is very large for the other. The following set of values has been used
to determine the waveguide parameters through Eq. (34): L/W = 100, kW/π = 2.05,
σ0/W = 0.1, δ0W = 0.85, ρW = 0.0, η0W = 1.0.

reduction of either of the two quantities inevitably reduces the quality of the whole mode-
selection scheme. Also, the relative dissipation strength of both modes, |γ1−γ2|, is largest
directly at the mode-opening k ≈ 2π/W , where the wavenumber k2 is much smaller than
k1 (see Eq. (3)). As shown in section 1.4, these problems can be conveniently solved by
introducing non-uniform absorption in the waveguide, which removes the absorption of
one eigenmode and simultaneously increases the losses for the second considerably.

The non-uniform absorption is facilitated by identifying the nodes of the wavefunction
φ(x, y) in Eq. (22) obtained for a system with no absorption, η0 = 0, and placing absorbers
at the node positions (e.g., of Gaussian shape), yielding the loss distribution η̃(x, y) which
in turn determines Γnm in Eq. (28). In Supplementary Fig. 5 we plot the corresponding
spectrum, where the imaginary part ImEi now differs decisively from the system shown
in Supplementary Fig. 3: Now, the imaginary part of the eigenvalue is close to zero for
one mode, while the other mode exhibits a very large absorption.

One can immediately appreciate the benefit of the above strategy by comparing the
results in Supplementary Fig. 6 with Supplementary Fig. 4: Injected from the left, one
mode propagates adiabatically and approximately undamped, the other mode however
is strongly dissipated while traversing the undulated waveguide and undergoes the non-
adiabatic transition to the first mode. By way of this, we have realised a high-quality
asymmetric switch that is based on the injection direction.

Furthermore, the designed absorber placement makes it possible to greatly reduce
the device dimensions to lengths considerably smaller than a length-to-width ratio of
L/W = 100, up to the limit at which additional non-adiabatic contributions inevitably
set in due to the fast evolution.

To obtain the EP position, it is necessary to extend the Hamiltonian from the pa-
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Supplementary Figure 6 | Dynamically encircling an EP in a waveguide with
position dependent absorption. Here we show the same as in Supplementary Fig. 4,
with the difference that we are now employing position dependent absorption in the
waveguide setup. The corresponding model parameters can be found in the caption of
Supplementary Fig. 5.

rameter trajectory to the inside of the loop, i.e., to extend the spectrum from the path
(δ(x), σ(x)) to all other points in the (δ, σ)-plane, and to show that the EP is encircled in
the process. To extend the Hamiltonian, we choose

H(σ, δ) = H0 − i
η0
2
Γ̃(σ, δ) , (51)

with

H0 ≡
(

δ Bσ
Bσ 0

)
, Γ̃(σ, δ) ≡

( k
k1

0

0 k
k2

)
∆σ + (1−∆σ)

(
σ

σ0

)2

Γ (f(δ), δ) , (52)

f(δ) ≡ 1

4

[
1 + cos

(
π
(δ − ρ)

δ0

)]2

, ∆σ ≡ f(δ)−
(

σ

σ0

)2

, (53)

which interpolates between position dependent absorption at the parameter loop and a
uniform dissipation at σ = 0. Here, the function Γ(σ, δ) denotes the matrix Γnm which
is based on the node positions of Eq. (22), which in turn depends on H0 = H0(σ, δ) (i.e.,
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the waveguide system in the absence of dissipation, η0 = 0). In the above extension
of the Hamiltonian, Γ depends only on δ, Γ = Γ(f(δ), δ). The procedure to show that
an EP is encircled is analogous to the uniform absorption case, we thus refer here to
section 1.6 for this argument. Here, we resort to obtaining the EP position numerically,
since the analytic expressions are cumbersome and do not offer any additional insight (see
Supplementary Fig. 12b).

Note that one has ample freedom in choosing the absorber position while still retain-
ing the asymmetric switching effect. The most effective strategy relies on placing the
absorbers directly at the modal node positions, as used for the effective model calcula-
tions shown above. For the experimental realization of the waveguide system, however,
such a loss placement would result in undesirably large back-reflections in the waveguide.
To mitigate this shortcoming, we thus rely on a continuous stripe-absorber to obtain the
decay necessary to encircle the EP, although it comes at the expense of an additional
parasitic absorption for the other, previously undamped, mode. However, as we show in
the main text (see Fig. 3), this alternative absorber design still readily allows to build an
asymmetric switching device that qualitatively follows the prediction made with the help
of the effective model presented in Eq. (29).

1.9 Parametric encircling and eigenvector flips

To provide an independent proof for the presence of an EP in our experimental setup (see
Fig. 3 in the main text), we now make use of the fact that an unambiguous signature of
the EP is the state-flip of the instantaneous eigenvectors in the course of a parametric EP
encircling [11,13,14] (see section 1.7). Correspondingly, our aim is to demonstrate how
the two instantaneous Floquet-Bloch modes interchange while traversing our trajectory
around the EP, Eq. (34), purely parametrically.

To facilitate this, we firstly note that in the Floquet-Bloch picture an instantaneous
eigenstate corresponds to the Floquet-Bloch mode propagating in a periodic waveguide
with a fixed modulation frequency detuning δ and amplitude σ. We thus proceed by
investigating waveguide configurations at equally spaced points xn along the path (34), as
shown in Supplementary Figs. 7 and 8: Directly at these configurations, the boundary’s
modulation function is given by ξ(x) = σn sin (Ωnx), with the instantaneous boundary
amplitude σn and instantaneous frequency

Ωn = kr + 2δ0

(
2
xn

L
− 1

)
+ δ0 + ρ

= kr + δn , (54)

for a waveguide with L = 25W . The protocol how to translate the chirped waveguide
configuration from Fig. 3 in the main text into the instantaneous values σn, Ωn and δn
above is, in fact, well known from the literature on chirped laser pulses (see, e.g., chapter
4.6 in [36]). Additionally, also the absorber is periodically continued from the points xn

both in its local shape and strength, maintaining its ability to strongly damp one Floquet-
Bloch mode while only weakly affecting the other (see Supplementary Fig. 7a,c). We thus
arrive at the conclusion that we can encircle the EP parametrically along the same loop
(34) that we encircled dynamically in our device (Fig. 3), by just concatenating a series of
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Supplementary Figure 7 | Instantaneous waveguide configurations. a, Schematic
of the experimental waveguide (black lines) corresponding to the setup shown in Fig. 3
in the main text and in Supplementary Fig. 11. The absorber is highlighted by a blue
line. b, Path taken in (δ, σ)-space to encircle the EP. Vertical dotted lines correspond to
configurations I to V at which we manufactured additional waveguides of fixed frequency
detuning δ and amplitude σ. Here, W = 0.05m denotes the waveguide width. c, The
instantaneous waveguide configuration III (black line and blue absorber) superimposed
on the chirped configuration in a (grey line and grey absorber). In the vicinity of the
target position xIII = 12.5W , both the waveguides and the absorbers coincide.

measurements on periodic waveguides with parameter values distributed along the loop
(34).

To implement this protocol also in the experiment we fabricated altogether five pe-
riodic waveguide configurations at which we determine the instantaneous Floquet-Bloch
eigenmodes. Supplementary Tab. 1 provides the parameters used at the specific points
xn to generate these instantaneous waveguide systems. Since the loop traverses the res-
onant configuration IV (at which the detuning vanishes), we expect the state-flip of the
eigenmodes to occur at this point.

In a periodic system, the instantaneous Floquet-Bloch eigenmodes are defined by their
behavior upon the action of the translation operator T̂� that translates a state by a full
period �,

T̂�φ(x, y) = φ(x+ �, y)

= eiK�φ(x, y) , (55)
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Supplementary Figure 8 | Waveguide configurations I to V considered in the
experiment. Waveguides with fixed boundary modulation amplitude σn and frequency
detuning δn, as determined by the configurations I to V shown in Supplementary Fig. 7.
Antennas are placed at both sides of the waveguide geometry 1.5m apart, the length
�A = �B denotes the distance from either antenna to the boundary modulated region
which features the periodically continued absorber (blue color). The total length of the
periodic segments are chosen to be mn�n, n = I, . . . ,V, with mn denoting the number
of periods �n = 2π/Ωn ranging from 1 to 4 (see text for details). The propagation
phases accumulated between the center region and the antennas are removed from the
experimental data.

configuration n I II III IV V
xn/W 7 9.75 12.5 15.25 18
δn ·W -1.65 -1.1 -0.55 0.0 0.55
σn/W 0.094 0.1416 0.16 0.1416 0.094

Supplementary Table 1 | Parameters of the experimental waveguide configu-
rations. Values for the periodic structures defined in Supplementary Fig. 7 by Roman
numerals: The target coordinate xn, the boundary amplitude σn and the linearized de-
tuning δn are given in units of the waveguide width W = 0.05m.
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Supplementary Figure 9 | Transmission matrix eigenvectors. Ratio of the eigen-

vector components c
(n)
i , i = 1, 2, where n = 1 (n = 2) denotes the eigenvector with the

higher (lower) transmission eigenvalue τn, indicated by red and blue color, respectively.
The arctangent is employed to map the ratios onto a finite interval [0, π/2]. Here we com-
pare the experimentally obtained data (blue downwards pointing triangles, red diamonds)
with the predictions of the effective model (dashed lines) and the corresponding numerical
simulations (blue upwards pointing triangles, red squares). Triangles and squares at the
end points denote solutions which are available analytically (see Eq. (3)).

(see also section 1.2). In terms of the experimentally accessible transmission matrix t for
the propagation through m such periods, we can immediately identify

t = T̂m
� . (56)

The Floquet-Bloch eigenmodes in the basis of the two propagating modes (c1, c2) are then
obtained from the eigenvectors of t1,

(
t11 t12
t21 t22

)(
c
(n)
1

c
(n)
2

)
= τn

(
c
(n)
1

c
(n)
2

)
, (57)

where the coefficients c
(n)
i correspond to the ith component of the nth eigenvector, with

eigenvalue τn. Since the absorber is placed such that one Floquet-Bloch mode is strongly
suppressed, |τ1|/|τ2| � 1, the eigenvectors are conveniently distinguishable by the absolute
value of their eigenvalues (in our experimental data we always have at least |τ1|/|τ2| > 6.0).

In the experiment, we restrict ourselves to waveguide lengths that are four times the
period, �n = 2π/Ωn, except for configurations I and II for which the modulated waveguide
is one and two periods long, respectively. These values are chosen such that the systems are
long enough to ensure that the transmission matrix eigenvectors are sufficiently separated
into the Floquet-Bloch modes, but still short enough to allow the measured signal to be
above the noise level. The latter requirement necessitates a smaller number of periods for
long boundary oscillations.

1Please note that in contrast to the main text, the transmission matrix elements are here defined such
that tnm determines the transmission from mode m into mode n.
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Finally, to demonstrate the state-flip of the instantaneous eigenvectors characteristic
for a parametric EP-encircling, we plot the absolute value of the eigenvector component
ratio c

(n)
1 /c

(n)
2 , following both from the experimental as well as from the numerical data,

and compare it with the predictions from our effective model (see Supplementary Fig. 9).

Indeed, the figure of merit arctan |c(1)1 /c
(1)
2 | for the dominant Floquet-Bloch eigenstate (red

color) starts close to zero for configuration I, with the eigenvector being almost exclusively

in the second sine-mode, c
(1)
2 � c

(1)
1 . At the resonance detuning δ = 0 (configuration IV),

a crossing between the dominant and the subdominant eigenmodes is clearly observed. For
configuration V, after the eigenstate-flip, the first sine-mode is more dominant than the
second one, c

(1)
2 < c

(1)
1 . Complementing these experimental results with the analytically

known eigenstates at the initial and final points of the loop, see Eq. (3), nicely displays
the anticipated state-flip. Note that, due to the analytical availability of the states in
lossless, straight waveguides with σ = 0, we have refrained from explicit experimental
measurements at the loop endpoints. In addition to the experimental measurements, the
state-flip is independently verified also by numerical simulations as well as by the effective
model dynamics, showing remarkable agreement.
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2 Supplementary figures

Supplementary Figure 10 | Modal wavefunction intensities |φn(x, y)|2 at the
waveguide exit. Numerically simulated modal wavefunction intensities for a waveguide
with a length-to-width ratio L/W = 100, obtained at the waveguide exit x = L (x = 0)
for injection from the left (right). This plot complements the data shown in Fig. 2 in the
main text (with a-d corresponding to the panels with matching labels in Fig. 2). It is
evident that we obtain close to pure modes at the device exits.
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Supplementary Figure 11 | Modal wavefunction intensities |φn(x, y)|2. Numer-
ically simulated modal wavefunction intensities for a waveguide with a length-to-width
ratio L/W = 25 (depicted dimensions are to scale). Shown are results for different input
modes and injection directions, corresponding to different encircling directions around
the EP. Arrows indicate the side from which the waveguide is excited, the first mode is
injected in panels a and c, the second mode in b and d, respectively. e, Plot of the dissi-
pation intensity η̃(x, y). Since the respective reflection intensities Rnm are not accessible
in the experiment, we have explicitly checked numerically that backscattering is negligible
compared to the forward scattering contributions, ensuring that the asymmetry observed
in Tnm indeed stems from an effective EP encircling. This fact is evident from the re-
spective ratios of the dominant transmission intensity T21 = T ′

12 = 0.66 vs. all reflection
intensities Rnm, R

′
nm, i.e., T21/Rnm, T

′
12/R

′
nm, which are well above a value of 103 (primed

quantities correspond to injection from the right side of the waveguide). The following
parameters have been used: kW/π = 2.6, σ0/W = 0.16, δ0W = 1.25 and ρW = −1.8.
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Supplementary Figure 12 | Parameter space trajectory and eigenvalue sheets.
Paths in parameter space taken in Figs. 4 and 6 (solid white lines in panels a and b,
respectively), on top of heatmaps of the eigenvalue sheets showing |ReE1 − ReE2| (left
column) and |ImE1 − ImE2| (right column). Start and end points of the trajectories, as
well as the EP, are indicated by white dots. The corresponding minima are highlighted
by dashed white lines.
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